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Abstract

■ An increasingly large number of neuroimaging studies have
investigated functionally connected networks during rest, provid-
ing insight into human brain architecture. Assessment of the func-
tional qualities of resting state networks has been limited by the
task-independent state, which results in an inability to relate these
networks to specific mental functions. However, it was recently
demonstrated that similar brain networks can be extracted from
resting state data and data extracted from thousands of task-based

neuroimaging experiments archived in the BrainMap database.
Here, we present a full functional explication of these intrinsic
connectivity networks at a standard loworder decompositionusing
a neuroinformatics approach based on the BrainMap behavioral
taxonomy as well as a stratified, data-driven ordering of cognitive
processes. Our results serve as a resource for functional interpreta-
tions of brain networks in resting state studies and future inves-
tigations into mental operations and the tasks that drive them. ■

INTRODUCTION

Intrinsic connectivity networks (ICNs) have emerged
as fundamental, organizational elements of human brain
architecture. Following the discovery of functionally cor-
related fMRI time series present during rest (Cordes et al.,
2000; Xiong, Parsons, Gao, & Fox, 1999; Biswal, Yetkin,
Haughton, & Hyde, 1995), ICNs have been consistently
identified inmultivariate decompositions of fMRI data using
independent component analysis (ICA; Allen et al., 2011;
Zuo et al., 2010; van den Heuvel, Mandl, Kahn, & Hulshoff
Pol, 2009; Damoiseaux et al., 2006; De Luca, Beckmann,
De Stefano, Matthews, & Smith, 2006; Beckmann, DeLuca,
Devlin, & Smith, 2005; van de Ven, Formisano, Prvulovic,
Roeder, & Linden, 2004; Kiviniemi, 2003). We recently
reported that ICA of thousands of activation studies pro-
duces coactivation networks that are strikingly similar to
resting state networks (Smith et al., 2009). The term “in-
trinsic connectivity network” (Seeley et al., 2007), therefore,
expands upon the concept of resting state networks to
include the set of large-scale functionally connected brain
networks that can be captured in either resting state or
task-based neuroimaging data. The evidence presented by
Smith et al. (2009) affirms that the functional organization
of the brain can be differentiated into spatially distinct

modes that are not limited to rest but extend to active
states. Because of the task-independent nature of the rest-
ing state, previous assessment of ICN functions has been
imprecise, relying on impressionistic naming gleaned from
component similarity to task-based results. In contrast, the
BrainMap database (brainmap.org) offers an innovative op-
portunity for automated functional interpretation of ICNs.
In the present study, we examine the full set of BrainMap
behavioral descriptors at a standard low order decomposi-
tion to create quantifiable descriptions of ICNs and identify
which fields carry the most explanatory power in delineat-
ing functional differences between networks.

Behavior is the critical variable regulated in all functional
neuroimaging experiments. To evoke and isolate a cogni-
tive domain of interest, investigators design paradigms in
which the stimulus, response, or instructions are categori-
cally or parametrically modulated. Precise manipulation
of all experimental variables ensures the identification of
brain regions associated with the underlying behavior.
The BrainMap taxonomy (Fox et al., 2005) records these
experimental manipulations as textual metadata to link
brain activations with their associated mental operations.
BrainMapʼs database structure, thus, allows the quantita-
tive determination of how strongly each ICN relates to a
given task or mental process. Here, we demonstrate that
ICNs map to different metadata combinations relevant to
cognition, emotion, perception, interoception, and action,
indicating that these networks are responsible for function-
ally unique operations. This systematic mining of BrainMap
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metadata provided a substantially richer characterization of
ICNs than has been previously possible.

Metadata exploration was carried out using hierarchical
clustering analysis (HCA) to sort both behavioral groupings
and networks into similar clusters. Combined application
of two data-driven analyses was performed to test our the-
ory that independent brain (ICA) and behavior (HCA) ana-
lyses yield limited insight into functional brain architecture
but jointly facilitate new knowledge discovery in cognitive
neuroscience. We hypothesized that our results would
yield some function–structure correlations that align with
well-established primary system organization (e.g., motor,
visual, auditory) and that other results would provide more
complex insight into higher domains of cognition andmulti-
sensory integration. As predicted by Smith et al. (2009), we
set forth a framework for deriving a neuroimaging-driven
cognitive ontology and establish that this strategy is ex-
tremely powerful when pursued in the context of intrinsic
connectivity. Our results serve as a resource for future inter-
pretations of brain networks in resting state studies, which
potentially will provide significant contributions to under-
standing functional connections spanning the entire brain.

METHODS

The BrainMap Database

The BrainMap database (Laird, Lancaster, & Fox, 2005,
2009; Fox & Lancaster, 2002) is an on-line repository of
published functional neuroimaging results. Reduced data
are archived in BrainMap in the form of three-dimensional
coordinates in stereotactic space (x,y,z) extracted from
the peak locations of reported brain activations in the
literature, similar to other databases such as SumsDB
(Van Essen, 2009), AMAT (Hamilton, 2009), and Brede
(Nielsen, 2009; Nielsen & Hansen, 2002). For each experi-
ment, the target brain template utilized during the spatial
normalization procedure is recorded to allow renormaliza-
tion to a standard brain space, thereby facilitating the meta-
analytic comparison of coordinates across studies. BrainMap
currently supports analyses in either Talairach (Talairach &
Tournoux, 1988) or Montreal Neurological Institute (MNI;
Collins, Neelin, Peters,&Evans, 1994) standard spaces. In the
present study, coordinates were analyzed in Talairach space;
conversions between spaces were carried out using the
Lancaster transform (Laird et al., 2010; Lancaster et al., 2007).

BrainMap currently archives coordinates from approxi-
mately 20% of the functional neuroimaging literature
(Derrfuss & Mar, 2009), along with behavioral metadata ex-
tracted over 67 coding fields, resulting in a total of nearly
1.4 million instantiations of BrainMap metadata. Our anal-
yses were carried out on peak coordinates and metadata
associated with 8637 functional brain imaging experiments,
which were extracted from 1840 publications that reported
69,481 activation locations across 31,724 subjects. Subject
ages ranged from 1 to 90 years old (mean of reported
group mean age = 31.5 years), which included studies re-

porting brain activations in men only (22%), women only
(8%), and mixed gender groups (70%).

Generation of Intrinsic Connectivity Maps

Peak coordinates in BrainMap were smoothed using
a Gaussian distribution (FWHM = 12 mm) to accommo-
date the spatial uncertainty associated with neuroimag-
ing foci and generate modeled activation images with
2-mm resolution (Figure 1, Step 1). This smoothing has
been shown to provide a reasonable approximation to
the whole brain statistical parametric images from which
they were extracted (Eickhoff et al., 2009; Salimi-Khorshidi,
Smith, Keltner, Wager, & Nichols, 2009). ICA (dimension-
ality d = 20) was applied to this 4D data (Space × Experi-
ment ID) using MELODIC (multivariate exploratory linear
optimized decomposition into independent components;
Beckmann et al., 2005) in FSL (FMRIB Software Library;
Woolrich et al., 2009; Smith et al., 2004) to decompose
the experiment images into 20 spatially independent com-
ponents, which represent the major modes of coactivation
across the BrainMap database (Figure 1, Step 2). A di-
mensionality of 20 was chosen to provide continuity of
comparison with our previous report involving ICA of
BrainMap experiment images (Smith et al., 2009). Along
with each spatial map, a corresponding experiment ID
vector was generated that describes how strongly a given
component relates to each of the original 8637 experiment
images. ICA maps were converted to z statistic images via
a normalized mixture model fit, thresholded at z > 4, and
viewed on a Talairach space template image (Kochunov
et al., 2002).

The BrainMap Taxonomy

The BrainMap behavioral taxonomy of functional neuro-
imaging studies includes 67 descriptor fields ( f ), which
are described in Supplementary Table 1. These fields relate
information concerning the citation, subjects, conditions,
and experiments (defined as contrasts of conditions result-
ing in a statistical parametric image), the latter three of
which are critical for establishing how observed brain ac-
tivation patterns were elicited. A subset of 14 fields was
selected to quantify the functional properties of ICNs ob-
served in BrainMap, based on two criteria: (1) structured
keyword format, rather than free text entries, and (2) de-
scription of functionally relevant metadata (e.g., titles of
journals were deemed not relevant to network descrip-
tions). These keyword fields (e.g., “paradigm”) are desig-
nated by a list of n classes (e.g., “saccades”) to maintain a
structured taxonomy (Supplementary Table 2). The class
lists are continually updated to evolve as the database grows
but have been structured tomaximize the creation of group-
ings of similar studies and minimize classes that include
only one or two studies.
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Metadata Matrices

Analysis of the spatial networks using ICA was followed
by analysis of the behavioral metadata, following a proce-
dure initially developed by Smith et al. (2009). Given that
each activation location in BrainMap maps to a complex
set of metadata fields, we utilized the matrix that quanti-
fies the relationship between components and BrainMap
experiments to assess the functional properties of each
ICA network. To do this, we computed the matrix M,
which is an e × d matrix whose e rows (one for each ex-
periment) and d columns (one for each ICA component)
describe the weightings of each component for each of
the original activation images,

M ¼ VdMd; ð1Þ

where Vd includes the d largest singular values of the “tem-
poral” (experiment ID) modes andMd is the mixing matrix
of size d × d. We then extract the n (Metadata class) × e
(Experiment) matrix P from BrainMap and form the final
matrix of metadata classes versus ICA maps,

Pd ¼ PM: ð2Þ

A set of 14 metadata matrices (of size n × d ) was
computed that corresponded to the 14 independent
metadata fields in Supplementary Table 2. These cate-
gories included but were not limited to behavioral domain
(the cognitive process isolated by the experimental con-
trast; for example, “working memory”; n = 50), paradigm
(the type of task or challenge presented to the subject; for

Figure 1. The data processing pipeline included four steps. Step 1: Peak coordinates in BrainMap were smoothed (12 mm FWHM) to generate
8637 modeled activation images. Step 2: ICA was applied to this 4D data using FSLʼs MELODIC to decompose the experiment images into 20 spatially
independent components. Step 3: The matrix that quantifies the relationship between components and BrainMap experiments was utilized to
compute a set of matrices that corresponded to 14 independent metadata fields, each with n classes. The relative salience as computed for each
field and the two fields with the highest salience were selected for further analysis: behavioral domain and paradigm. Step 4: HCA was performed
on the concatenated behavioral domain and paradigm matrix (125 metadata classes × 20 networks). Clustering was first performed on the
combined matrix to determine groupings across metadata classes; subsequently, the matrix was transposed and the analysis repeated to
quantify similarity across networks.

Laird et al. 3
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example, “n-back”;n=75), stimulusmodality (e.g., “visual,”
“auditory”; n = 7), stimulus type (e.g., “letters,” “tones”;
n = 38), response modality (e.g., “hand,” “foot”; n = 8),
response type (e.g., “button press,” “speech”; n = 13), or
task instructions (e.g., “generate,” “attend”; n = 17).
Metadata matrices were normalized by rows to aid visuali-
zation and account for uneven sampling across classes in
the BrainMap database (e.g., there are more studies in
BrainMap that focus on cognition than interoception).

Once the relationships between networks and BrainMap
metadata were assessed across all fields, we assessed the
relative salience of each field. The maximum value within
each component was computed for every metadata class
and averaged across classes for each field as a method of
identifying if a given metadata field captured a large
amount of functional information. The average value,
rather than the maximum value, was computed across
fields because the high field-wise maximum values can be
driven by very high values within a single class, whereas the
average value provides a better measure for the range of
classes across a given field. Using this approach for com-
puting the salience of all 14 metadata fields, we selected
two variables that captured the highest degree of explana-
tory power, behavioral domain and paradigm, and pursue
further unpacking of the ICNs using these fields (Figure 1,
Step 3).

HCA

To assess groupings of similar metadata classes within be-
havioral domain and paradigm fields, HCA was performed
separately on the two matrices using 1 − r as the distance
between clusters, where r is the Pearsonʼs correlation
coefficient. The Pearsonʼs coefficient was chosen over
the Spearmann rank correlation coefficient so as to pre-
serve column structure of the Metadata × Component
matrices (i.e., metadata pertaining to a given ICN was ana-
lyzed in comparison with metadata from a different ICN).
Similar dendrograms were obtained when analyzing the
50 behavioral domains and 75 paradigm classes separately;
therefore, these fields were concatenated and HCA was
performed on the combined metadata matrix of 125 meta-
data classes × 20 networks. Clustering was first performed
on the combined matrix to determine groupings across do-
mains and paradigms; we subsequently transposed the
matrix and repeated the analysis to quantify similarity across
ICNs (Figure 1, Step 4). Clustering for both dimensions was
performed in MATLAB (Natick, MA) using three different
methods that differ in how they measure the distance be-
tween clusters. The “single” method utilizes the shortest
distance, “complete” utilizes the furthest distance, and
“average” utilizes the unweighted averaged distance. The
same results were consistently obtained across these three
clusteringmethods, indicating high reliability of our results;
here, we present the results obtained using the “single”
method.

RESULTS

Functional interpretation of ICNs proceeded in two stages,
first by identifying networks via spatial analysis of Brain-
Map peak coordinates and then by characterizing their
functions via analysis of BrainMap behavioral metadata.
Figure 2 displays the ICA results of images modeled with-
in BrainMap using previously developed methods (Smith
et al., 2009), in which sets of peak foci were decomposed
into 20 spatially co-occurring ICN maps (for additional
slices, see Supplementary Figure 1). We expected to ob-
serve small differences in spatial topographies compared
with the ICA decomposition of BrainMap data performed
by Smith et al. (2009) because of the expanded data set
available in the present study (i.e., 7342 activation
images were included in 2009, whereas 8637 images
were analyzed here). This prediction was confirmed
when we observed that 17 components in Smith et al.
(2009) exactly matched 17 components in the present
data set. Of the remaining three components, two were
split or merged from existing components, and one was
novel to the previous analysis. Despite this minor varia-
tion in results, all of the components identified in the
present data set have been observed in other ICA-based
studies of resting state and intrinsic connectivity (Allen
et al., 2011; Zuo et al., 2010; Robinson et al., 2009; Smith
et al., 2009; van den Heuvel et al., 2009; Calhoun, Kiehl,
& Pearlson, 2008; Damoiseaux et al., 2006; De Luca et al.,
2006; Beckmann et al., 2005).
A recent study by Biswal et al. (2010) describes the de-

composition of a very large resting fMRI data set (306 sub-
jects) using ICA at the same standard low dimensionality
that was chosen here (d = 20). When comparing the rest-
ing state networks observed by Biswal et al. (2010) to the
BrainMap coactivation networks described here, we found
that 12 of the nonartifactual components were an excellent
match whereas four components were a close partial
match. An example of a partially matching network is the
default mode network, which was observed as a single
component in our analysis (ICN 13), but split into posterior
(IC 6) and anterior (IC 13) components in Biswal et al.
(2010), a decomposition that has been frequently ob-
served in default mode studies (Laird, Eickhoff, et al.,
2009; Uddin, Kelly, Biswal, Xavier Castellanos, & Milham,
2009; Damoiseaux et al., 2006). Therefore, only 2 of
20 components in the present data (ICNs 5 and 9) showed
no correspondence with the networks presented by Biswal
et al. (2010), demonstrating stronger agreement be-
tween resting state and activation networks than observed
by Smith et al. (2009). This higher degree of corre-
spondence can likely be attributed to the much larger sam-
ple size of the resting state analysis (i.e., 36 subjects
analyzed by Smith et al., 2009 vs. 306 subjects by Biswal
et al., 2010).
In the previous study by Smith et al. (2009), the dis-

cussion of functional network properties was limited to
the 10 well-matched pairs of networks that were observed.
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Of the remaining 10 networks, two were found to be arti-
factual (identical to the analysis presented here) and
eight were judged to be “of more complex interpreta-
tion” and omitted from further discussion. However, as
these networks have all been observed in previous de-
compositions of resting state fMRI data, we sought to
determine the full functional explication of the entire
set of observed components at a low order decomposi-
tion, as described below.

Metadata Matrices

To quantitatively assess the functional specializations of
the observed ICN, we examined the per-experiment
contributions to each component across 14 different
BrainMap metadata fields. Metadata matrices describing
the weightings of each component for each metadata class
were generated for these functionally relevant fields and
are visualized as heat maps (Supplementary Figures 2–13).

Figure 2. ICA was used to decompose 8637 experiment images extracted from the BrainMap database into 20 spatially co-occurring maps of
ICNs. ICA maps were converted to z statistic images via a normalized mixture model fit, thresholded at z > 4, and viewed in standard
(Talairach) brain space. Orthogonal slices of the most representative point in space are shown.

Laird et al. 5
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In these images, positive matrix values indicate metadata
classes that are correlated with a given BrainMap network,
and negative values indicate classes that are decorrelated,
in the sense that these metadata classes were not observed
across the corresponding experiments. We are cautious in
not drawing overly significant interpretations of the nega-
tive values because they result from mathematical artifacts
associated with explicit and implicit data demeaning in ICA
and are not derived from negative values in the original
data. However, they do offer potentially interesting infor-
mation on the relationships between functionally exclusive
metadata classes. The matrices depicted a unique compo-
site of mental operations, revealing that the 20 ICNs dif-
fered not only anatomically, but also functionally.

HCA

We determined that the behavioral domain and paradigm
contained the most explanatory power of the 14 meta-
data fields by computing the maximummatrix value within
each metadata class and averaging across all classes for a
given field, because a high value indicates a large amount
of functional information was captured (Figure 3). HCA of
the concatenated behavioral domain and paradigm matrix
was first performed to determine clustering across do-
mains and paradigms; we subsequently transposed the
matrix and repeated the analysis to quantify similarity across
ICNs. Figure 4 details the first set of HCA results as a den-
drogram that reflects the linear dependence of any two
metadata classes (a high-resolution version is available
at brainmap.org/icns/dendrogram). Larger bins along the
x axis (e.g., “Action,” “Language”) indicate clusters of multi-
ple behavioral domains and paradigms with congruous
themes. For example, a strong link was observed between
numerous affective and interoceptive processes, suggesting
that these processes are driven by similar neural substrates.
Individually labeled rows (e.g., “Deception Task”) indicate
incompatible classes that did not fall within a well-defined
cluster. The far right of Figure 4 thus includes a number

of tasks with unique functional bases that were not found
to cluster within any other group. For example, neuro-
economics as elicited by “Delay Discounting” tasks was
found to be strongly dissimilar to any other metadata.
The second set of HCA results provided data-driven

groupings across ICA components and revealed three clus-
ters of networks displaying high similarity, along with a
divergent set of dissimilar networks (Figure 5). The corre-
sponding behavioral domain and paradigm metadata for
the three similar network clusters revealed dominant func-
tional themes of emotion and interoception, motor and
visuospatial processing and coordination, and vision. The
set of dissimilar networks was composed of five networks
with well-defined cognitive functions on an individual basis
but lacking in a collective theme. The composite metadata
matrix for behavioral domains and paradigms was then
reordered to reflect the classifications set forth by these
clustering results to provide optimal visualization and inter-
pretation of the functional properties associated with each
ICN. The corresponding set of relationships is displayed as
a heat map in Figure 6 (a high-resolution version is avail-
able at brainmap.org/icns/heatmap).

Functional Interpretation of Networks

We provide the following functional explication of each
ICN. To fully describe the structural extent of each net-
work, we employ multiple nomenclatures, including ana-
tomical (e.g., “precentral gyrus,” “thalamus”), directional
(e.g., “dorsolateral pFC”), functional (e.g., “primary motor
cortex”; “M1”), and cytoarchitectonic (e.g., “Brodmannʼs
area 32”). The use of these different labeling schemas is
intended as communicative technique to report the ana-
tomical regions encompassed by each spatial map. In par-
ticular, use of the Brodmannʼs area terminology is not
meant to describe specific cytoarchitectonic boundaries
but is used as a macroscopic indicator of inexact bound-
aries to provide the reader with an estimation of the ana-
tomical locations of the ICNs.

Figure 3. The maximum metadata loading value across components was computed for every metadata class and averaged across all classes
within a given field, as an approach to determine which fields captured a large amount of functional information. We hence identified the
behavioral domain and paradigm as the two fields that provided the highest degree of network explanatory power.
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Group 1: ICNs 1–5

The networks grouped in cluster 1 of Figure 5 were
strongly related to a collective range of emotional and auto-
nomic processes. These processes included interoceptive
challenges related to thirst, viewing of sexually explicit or
highly emotional pictures or films, and recall of emotional
autobiographical memories. This category also included
gustation and olfaction, which are technically classified
under “Perception” under the BrainMap taxonomy, but it
is likely that these classes were strongly clustered to inter-
oception given their strong link to the autonomic responses
of hunger and thirst, rather than to truly exteroceptive pro-
cesses of mechanoreception or proprioception.

• ICN 1 (limbic and medial-temporal areas) included pri-
mary olfactory and limbic association cortices (BA 28/34/
35/36/38), including parahippocampal gyri. This network
was strongly associated with discrimination of emotional
faces and pictures, particularly those that elicited fear, hap-
piness, or humor. In addition, ICN 1 was strongly weighted

toward interoceptive processing elicited during air-hunger
and, more weakly, olfactory and gustatory responses.

• ICN2 (subgenual ACCandOFC) includedBA25 andBA10/
11/12 andwas loaded towardolfaction, gustation, and emo-
tion, with a strong preference for reward and thirst tasks.

• ICN 3 (bilateral BG and thalamus) was found to be linked
to a wide range of mental processes, most strongly to re-
ward tasks, nonpainful thermal stimulation, and interocep-
tive functions (e.g., bladder, sexuality, hunger, and thirst).
In addition, this network was also found to be relevant to
motor, pain, and somatosensory processing, with prefer-
ence for a few cognitive tasks such as classical condition-
ing, go/no-go, film viewing, syntactic discrimination, and
delay discounting. ICN 3 was additionally associated with
emotional tasks, most strongly to anxiety as well as with
olfaction and TMS.

• ICN 4 (bilateral anterior insula/frontal opercula and the
anterior aspect of the body of the cingulate gyrus) encom-
passed BA 13/16 andBA 24. These regions accounted for a
complex set of language, executive function, affective, and

Figure 4. Behavioral-driven HCA was carried out on the metadata matrix of concatenated behavioral domains and paradigms to generate clusters
of metadata classes with congruous themes. HCA yielded a complex, well-organized dendrogram associating specific cognitive operations with
corresponding experimental paradigms.

Laird et al. 7
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interoceptive processes corresponding to the Stroop, go/
no-go, Flanker, and Simon tasks, as well as auditory, pain,
and gustatory processes. Other paradigms included decep-
tion, music, and classical conditioning. This wide range of
network functions was elicited across all possible stimulus
modalities. Given the heterogeneous range of functions
associated with ICN 4, we consider it to be a transitional
network linking cognition and emotion/interoception.

• ICN 5 (midbrain) demonstrated strong, restricted load-
ings to acupuncture and air-hunger tasks. This network
was also weakly linked to sensorimotor functions and
autonomic processes relevant to the bladder. Experi-
ments reporting activations within this network were
strongly weighted toward interoceptive stimulation.

Group 2: ICNs 6–9

The second cluster of networks was driven by a mixture
of functions related to motor and visuospatial integration,
coordination, and execution.

• ICN 6 (superior and middle frontal gyri) included the
premotor and supplementary motor cortices (SMA;
BA 6) and FEFs (BA 8/9) and was related to cognitive
control of visuomotor timing and preparation of exe-
cuted movements. Strongly weighted behavioral do-
mains included action imagination and preparation
and visual motion, and important paradigms were the
Flanker task, saccades, antisaccades, and the learning
and recall of complex sequences. Stimulus types
tended toward visual targets, fixation points, and LEDs,
to which subjects were frequently instructed to fixate,
imagine, and track.ICN 7 (middle frontal gyri and

superior parietal lobules) included dorsolateral pre-
frontal (BA 46) and posterior parietal cortices (BA 7)
involving visuospatial processing and reasoning, with
a strong weighting for tasks such as the Wisconsin Card
Sorting Test, saccades, antisaccades, mental rotation,
and counting or calculation. Notably, metadata func-
tions for ICNs 7 and 4 agree with the systems dif-
ferentiated in a dual-network model of top–down
attentional control proposed by Dosenbach et al.
(2007) wherein fronto-parietal and cinguloopercular
networks are responsible for adaptive control and
stable maintenance functions, respectively.

• ICN 8 (ventral precentral gyri, central sulci, postcentral
gyri, superior and inferior cerebellum) included primary
sensorimotor cortices for upper extremities (M1; S1;
BA 4/3/1/2). This network was associated with action
and somesthesis corresponding to hand movements
and included tasks such as finger tapping, grasping,
pointing, electrical and vibrotactile stimulation, and TMS.

• ICN 9 (superior parietal lobule) included the medial
posterior parietal association area (BA 5). This network
was not observed as a separate component in our pre-
vious analysis (Smith et al., 2009) but split from the
previous ICN 8 component (hand region of the pri-
mary sensorimotor cortex) because of the increased
number of papers in BrainMap accumulated between
analyses. Support for the decomposition of ICNs 8
and 9 into two separate components is provided by a
previous study indicating that medial superior parietal
cortex (BA 5) is functionally distinct from primary sen-
sorimotor cortices (Scheperjans, Grefkes, Palomero-
Gallagher, Schleicher, & Zilles, 2005). Interestingly,

Figure 5. Network-driven
HCA was carried out on the
intrinsic connectivity metadata
matrix of concatenated
behavioral domains and
paradigms to generate
clusters of networks with
function behavioral
characterizations. HCA
yielded three clusters of
networks displaying high
similarity (blue, green, red),
along with a divergent set
of dissimilar networks
(black), which included a
weakly coupled network
pairing (light blue).

8 Journal of Cognitive Neuroscience Volume X, Number Y
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the heat map for this network was strongly negative,
indicating the range of cognitive and emotional func-
tions that were anticorrelated, rather than correlated,
with this region. A weak positive preference was found
for motor execution and learning, particularly involving
drawing and reaching, in agreement with previous
research on the integration of body movements and
hand–eye coordination (Andersen & Cui, 2009;
Creem-Regehr, 2009).

Group 3: ICNs 10–12

This cluster encompassed three networks related to vi-
sual perception.

• ICN 10 (middle and inferior temporal gyri) included
the middle temporal visual association area (MT,
MST, V5; BA 37/39) at the temporo-occipital junction.

This network was elicited by viewing complex, often
emotional, stimuli (e.g., faces, films), as well as action
observation, overt picture naming, and visual tracking
of moving objects, particularly random dot formations.
Other tasks included mental rotation and the discrimi-
nation of locations in space.

• ICNs 11 and 12 (lateral and medial posterior occipital
cortices) included the primary, secondary, and tertiary
visual cortices (V1, V2, V3; BA 17/18/19). When viewed
together, ICNs 12, 11, and 10 extended from medial to
lateral aspects of the occipital and temporal cortices.
ICN 12 was strongly linked to simple visual stimuli such
as flashing checkerboards, and ICN 11 involved higher-
level visual processing associated with orthography
and covert reading. ICN 11 also corresponded to
Braille reading, demonstrating observed plasticity of
these cortical regions in blind subjects. ICNs 11 and

Figure 6. The concatenated metadata matrix for BrainMap behavioral domains and paradigms provides a per-network mapping of the functional
properties of each ICN, ordered to reflect the groupings set forth by the behavioral- and network-driven HCA results.

Laird et al. 9
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12 displayed relatively weak loadings across many
fields, such as behavioral domain, paradigm, and sev-
eral of the condition fields (Figure 3). Rather than re-
flect a functional nonspecialization, further inspection
of the heat map for the field “experimental contrast”
revealed that many reported activations in these lateral
and medial visual networks resulted from experiments
in which the visual stimulation was not properly con-
trolled. Because these visual activation patterns were
not the primary effect sought and were classified under
some other functional class (e.g., a delayed match to
sample task contrasted with a resting baseline would
be classified with a behavioral domain of “working
memory,” not “vision”), the functional descriptors re-
lating to vision were, therefore, diluted across other
metadata classes.

Divergent Networks: ICNs 13–18

Following the clustering of ICN groups 1–3, which dis-
played high within-group component similarity, we ob-
served several divergent networks that demonstrated
strong dissimilarity to the three previous groups and to
each other. The exception to this trend was found for
ICNs 16 and 17, which were coupled together, although
not to the degree seen across groups 1–3.

• ICN 13 (medial prefrontal and posterior cingulate/pre-
cuneus areas) was the component known as the de-
fault mode network and strongly corresponded to
theory of mind and social cognition tasks. Weaker cor-
respondence was observed for fixation, episodic recall,
imagined scenes, and delay discounting tasks.

• ICN 14 (cerebellum), commonly associated with action
and somesthesis, demonstrated a distributed range of
sensorimotor, autonomic, and cognitive functions. In-
terestingly, both overt and covert naming showed a
preference for cerebellar activity, despite the fact that
no other language or speech tasks were associated
with this region. Similarly ICN 14 showed preference
for processing of humorous stimuli, yet no other emo-
tional responses were observed.

• ICN 15 (right-lateralized fronto-parietal regions)
included right BA 44/45 and 22/39/40. This network in-
volved multiple cognitive processes, such as reasoning,
attention, inhibition, and memory, and showed prefer-
ence for n-back, delay discounting, and divided audi-
tory attention tasks.

• ICN 16 (transverse temporal gyri) included the primary
auditory cortices (A1; BA 41/42) and was related to
audition (including tone and pitch discrimination),
music, and speech. Other processes included phono-
logical discrimination and oddball discrimination.

• ICN 17 (dorsal precentral gyri, central sulci, postcentral
gyri, superior and inferior cerebellum) included pri-
mary sensorimotor cortices for mouth (M1, S1; BA 4/
3/1/2) and was associated with action and somesthesis

corresponding to speech, such as overt reading or rec-
itation, chewing or swallowing, and flexion/extension
of the tongue.

• ICN 18 (left-lateralized fronto-parietal regions) included
Brocaʼs (BA 44/45) and Wernickeʼs (BA 22/39/40) areas
and strongly mapped to a host of semantic, phonologic,
and orthographic language tasks such as word genera-
tion and covert reading, as well as working and explicit
memory tasks, such as paired associate recall, cued
encoding and recognition, and the Sternberg task. Sur-
prisingly, this network displayed a stronger preference
toward working memory than did ICN 7. Stimulus types
included words, pseudowords, letters, and Asian char-
acters, with a dominance of button press responses.

Artifacts: Components 19–20

Artifactual resting state networks following ICA decom-
positions have been previously attributed to respiratory
and cardiac functions (Zuo et al., 2010; Smith et al., 2009).
Although these specific artifacts are not pertinent when
analyzing co-occurring activation networks using peak co-
ordinates, we did observe artifacts of a different origin.

• Components 19 and 20 were characterized by uni-
formly distributed metadata maps that showed no
preference for any domain of brain function. Instead,
ICN 19 corresponds to template mismatch errors in
BrainMap that occur when recording standard brain
space of reported locations (i.e., MNI or Talairach co-
ordinates). MNI brains are approximately 20% larger
than individual subject brains (Lancaster et al., 2007),
and inaccurate classification of standard space results in
substantial errors during coordinate-basedmeta-analyses,
with the largest errors lying in superior frontal and infe-
rior cortices (Laird et al., 2010; Lancaster et al., 2007).
Given that ICN 19 includes voxels that rim the outer
boundaries of the brain, particularly in the inferior direc-
tion, it is reasonable to assume that ICN 19 results from
MNI foci erroneously flagged as Talairach coordinates,
typically because of ambiguous reporting standards in
the literature. ICN 20, although not as immediately iden-
tifiable as artifact as ICN 19, similarly includes voxels near
the edge of the brain, particularly in the right superior
frontal cortex. The origin of this component is difficult
to characterize, but an abnormally high number of ex-
periments in this component utilized MedX software to
normalize their data to Talairach space, indicating that
ICN 20 is potentially because of some algorithmic ab-
normality occurring during spatial normalization.

Validation of Metadata Clustering

Given the observed complex clustering of behavioral
domains and paradigms in Figure 4, we investigated if a
similar dendrogram could be obtained outside the con-
text of networks driven by intrinsic connectivity. To this
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end, we extracted the metadata matrix of behavioral do-
mains and paradigms directly from the experiments in
the BrainMap database (8637 experiments × 125 meta-
data classes), which was free of any effects related to
the functional organization of ICNs. Clustering this matrix
yielded a uniform and highly dissimilar dendrogram
characterized by very little branching and minimal orga-
nizational structure (Figure 7). Important structural dif-
ferences between the dendrograms in Figures 3 and 7
are apparent in the large discrepancy in y-axis scaling
(maximum dissimilarity metric of 0.45 and 0.90, respec-
tively). When measuring how well a dendrogram reflects
a given data set, it is useful to compare the original dis-
tance data to the cophenetic distances, where for any two
classes the cophenetic distance is the distance between
the two clusters that contain those two classes, repre-
sented by the link height in the cluster tree. High cor-
relation between original distances and cophenetic
distances indicates valid clustering models. We computed
the cophenetic correlation coefficient for the dendro-
gram derived from clustering based on brain–behavior
correlations (Figure 4; cbb = 0.5119) and compared it
to that associated with behavior alone (Figure 7; cb =
0.3516). A cophenetic correlation coefficient of 1 indi-
cates a perfect clustering solution; therefore, the dendro-
gram associated with ICNs reflected a more accurate
approximation to the given data set. Closer inspection
of the dendrogram driven by behavior alone reflected
the trivial co-occurrences of tasks and processes asso-
ciated with experimental design trends. For example,
one cluster indicated that when a task utilizes a paradigm
of “Music Comprehension/Production,” it is typically

coded in BrainMap with a behavioral domain of “Cogni-
tion.Music”. These simple paradigm–domain pairs were
observed throughout the behavior-alone dendrogram
and overall did not convey the rich complexity of rela-
tionships between tasks and processes that was observed
for the brain–behavior dendrogram. Thus, we conclude a
significant functional advantage to joint analysis of brain
and behavior information, as opposed to analysis of
behavior alone.

DISCUSSION

We examined the epistemological potential of ICNs via
large-scale mining of the BrainMap database, motivated
by recent evidence relating these networks to functional
brain architecture (Smith et al., 2009). ICA was applied at
a standard low model order to determine spatial group-
ings of brain regions, whereas HCA identified behavioral
groupings of cognitive tasks and processes. Spatial to-
pographies of the BrainMap networks more closely
matched the set of resting state networks observed in a
recent large-scale analysis of 306 subjects (Biswal et al.,
2010) than observed by Smith et al. (2009), and it is likely
that the higher degree of correspondence is a result of
the increased sample size. The innovation behind the
present study lies in the joint analyses of brain networks
and behavioral metadata, which yielded both anatomical
localization of networks as well as the automated charac-
terization of their functional properties in a manner not
possible in resting state data. Minimal organizational
structure was discerned when behavior was analyzed in-
dependently, as demonstrated in HCA before extraction

Figure 7. The metadata matrix of behavioral domains and paradigms was extracted directly from experiments archived in BrainMap (8637
experiments × 125 metadata classes), without performing ICA on these data. HCA yielded a uniform and highly dissimilar characterized by very little
branching and minimal organizational structure. Inspection of this dendrogram revealed a composition based upon simple paradigm–domain pairs
that merely reflect trends in experimental design (e.g., n-back tasks elicit working memory).
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of ICNs wherein we observed superficial and limited pair-
ings of a few domains and paradigms that merely reflect
the way tasks are constructed (e.g., n-back tasks elicit
working memory). To this extent, consideration of be-
havior alone captures only a summary of experimental
design trends, rather than the complex and meaningful
set of relationships illustrated in Figure 4.

Low-level Unimodal Processing

We successfully predicted that unimodal processing do-
mains relevant to audition, action, and vision would be
clearly isolated to well known neural systems, providing
a strong metric of success for our method. Primary audi-
tory cortices localized to ICN 16, with strong behavioral
relationships to audition and music. Similarly, primary
motor cortices mapped to basic sensorimotor tasks, but
localized to two different ICNs corresponding to somato-
topic mapping of the hand (ICN 8) or mouth (ICN 17).
More complex visuomotor coordination was separately
extracted to ICN 6 in the supplementary motor and pre-
motor cortices and FEFs. This simple-to-complex motor
organization was mirrored in the visual system in ICNs
12 (medial visual cortices), 11 (lateral visual cortices),
and 10 (middle temporal visual area), in which correlated
stimuli progressed from flashing checkerboards to com-
plex visual shapes and letters to emotional or moving
presentations of faces or pictures. Rather than a strict
spatial decomposition for primary, secondary, or tertiary
visual cortices, we instead observed a medial to lateral
delineation of networks that has been replicated in numer-
ous resting state analyses (Allen et al., 2011; Zuo et al.,
2010; Smith et al., 2009; Calhoun et al., 2008; Damoiseaux
et al., 2006; De Luca et al., 2006; Beckmann et al., 2005),
with functional properties that agree with previous evi-
dence for retinotopic organization differentiating macular
and full field stimulus presentations (e.g., words vs. checker-
board patterns; Fox et al., 1986).

High-level Cognitive Processing

Predictions that high-level cognitive processes would in-
volve neural systems demonstrating more complex and
less evident behavioral segregations were also confirmed.
Our results included some known neural relationships of
cognition, such as ICN 18, which was left lateralized to
Brocaʼs and Wernickeʼs areas and displayed a strong pref-
erence for language and memory tasks. Other results
were less unequivocal and indicate a potential in these
analyses for generating new hypotheses in cognitive neuro-
science. For example, we were curious to see if commonly
held theories concerning the organizational roles of brain
areas relevant to executive function could be substantiated
by the present results. Specifically, we were interested if
the right inferior frontal gyrus was related to inhibition,
anterior cingulate to response conflict, and lateral prefron-
tal and parietal cortices to working memory. Our results do

confirm these trends (ICNs 15, 4, and 7, respectively), but
with additional specifications. Two ICNs were linked to
inhibition, possibly because of separate components for
cognitive (ICN 15) and motor (ICN 6) processing. Cog-
nitive control related to stimulus and response conflict as
induced by the Stroop, Simon, and Flanker tasks was
strongly related to ICN 4, as expected, but ICNs 18 and 6
were also associated with these tasks, perhaps as a result of
task differences associated with verbal and visuospatial
processing. Multiple classes of working memory tasks
mapped to lateral prefrontal and parietal cortices (ICN 7),
yet ICN 18 demonstrated a relatively stronger mapping to
these processes that may reflect a more significant reliance
on articulatory rehearsal (Badre & Wagner, 2007; Chein,
Fissell, Jacobs, & Fiez, 2002; Smith & Jonides, 1999). Rel-
ative dissociation was observed for the loadings for the
n-back, delayed match to sample, and Sternberg tasks
across ICNs 7, 15, and 18. The n-back task was strongly
loaded for all three of these networks, but restrictedmainly
to ICN 18 for delayedmatch to sample and Sternberg tasks,
indicating important network differences between con-
tinuous updating and recalling of stimulus information.
Lastly, we noted an overall ontological segregation be-
tween specific processes related to executive functioning,
with relative dissimilarity between clusters associated with
working memory and reasoning and those of inhibition
and attention (Figure 4). These classifications suggest that
localization differences associated with separate executive
function subdomains may be quite profound.
Interesting results relevant to higher-level cognition

were also observed in the cerebellum. Cerebellar function
has been intensely debated for a century, with numerous
divergent theories related to motor coordination and
timing, motor learning, sensory integration, or higher cog-
nitive processing. Our results indicated highly distributed
functions of the cerebellum, with limited specialization.
One explanation is that the cerebellum is implicated in
such a diverse range of polymodal processes that it may
be responsible for a spectrum of processes rather than a
unique function or perhaps functions as a coprocessing
node (Bower, 1997).

Clustering of Networks

The network groupings observed in Figure 5 are poten-
tially one of the more valuable findings of this study. Often,
the results of a neuroimaging network decomposition are
reported by organizing subsets of networks into function-
ally similar groups. This is generally done in a purely quali-
tative manner, relying on authorsʼ knowledge of basic
neural systems. Typically, a group is easily identified for
visual networks and another for motor networks. Beyond
this, the groupings greatly vary and often include both
functional (e.g., “default mode,” “attention,” or “executive
function” networks) and anatomical (e.g., “BG,” “frontal-
parietal,” “cerebellar” networks) nomenclatures. How-
ever, the unique nature of BrainMap metadata allows us
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to demonstrate a new approach, in which the groupings
were driven solely bymetadata correlations that reveal simi-
lar task patterns across networks, with no bias reflecting our
particular knowledgebase of functional systems. Here, we
provide a quantitative evaluation of how network functions
can be grouped, with an informative assessment of the way
in which some groups are strongly correlated in function
(e.g., vision and motor) and other groups are not (e.g.,
the divergent cognitive networks).

Model Order and Other Approaches

The purpose of the current study was to address the lack
of functional labels for ICNs. Although previous work has
addressed component selection and quantitative discrim-
ination between networks and artifactual components
(Sui, Adali, Pearlson, & Calhoun, 2009; De Martino
et al., 2007), the present study provides innovative quan-
titative labeling of component functions. The present
analysis focused solely on ICA at a standard low dimen-
sionality of 20 components to allow for straightforward
comparisons to the networks observed in other resting
state ICA studies in the literature, the majority of which
utilize a low model order. We were particularly interested
in facilitating comparisons to the 20 networks identified
by Biswal et al. (2010) and Smith et al. (2009), given the
high significance of their findings. Our previous work
(Smith et al., 2009) included the initial description of
the functional labeling method presented here but pro-
vided minimal descriptions of the network functions.
We have addressed this potential ambiguity in behavioral
interpretations by expanding to include all observed net-
works using the full extent of BrainMap metadata. These
results thus allow for a clearer explication of the functional
associations that can be inferred regarding the ICA net-
works derived from a standard low order decomposition.
By fully developing a method for behavioral interpretations
of ICNs at a low model order, we aim to link this work to
current resting state studies and provide a bridge to future
BrainMap ICA studies that integrate an expanded view of
the human connectome across multiple dimensionalities.
Therefore, further investigations concerning the spatial
and functional network patterns at much higher dimen-
sions are currently being explored (d = 100, 150, and
200) using these methods, which relate to previous work
in repeated decompositions of resting state data (Abou-
Elseoud et al., 2010; Kiviniemi et al., 2009). As suggested
by Smith et al. (2009), these high model order analyses
have the potential to provide valuable insight into the or-
ganizational hierarchy for networks and subnetworks
across the full range of the human connectome. However,
these more fine-grained analyses result in a large and com-
plex set of networks that can potentially be difficult and
cumbersome to interpret. Our efforts here to clarify the
functional differences between observed low-dimensionality
networks will likely be critical for comparative analyses of
results at higher dimensions.

Meta-analytic connectivity modeling (MACM) is a method
that offers results that are similar to the coactivation-based
results seen in high model order ICA decompositions;
however, it is based on regionally specific questions, as
opposed to the whole-brain network approach presented
here. In MACM, the coactivation patterns associated with a
ROI are queried across the BrainMap database and ana-
lyzed to determine if any functional parcellation can be
identified based on differential patterns of whole-brain
connectivity across a range of tasks. This method has been
used to assess functional connectivity of the amygdala
(Robinson, Laird, Glahn, Lovallo, & Fox, 2010) and parietal
operculum (Eickhoff et al., 2010), as well as regions of the
default mode network (Laird et al., 2009). These analyses
have focusedona single regionornetwork,whichhas allowed
a deep examination of the connectivity and metadata-based
assessment of function. In future studies, we aim todetermine
towhat extent the results of fine-grainedMACMstudiesmatch
the results of ICA decompositions at high model order. Simi-
larly, we aim to investigate the comparative results that can be
obtained via non-meta-analytic, seed-based resting state func-
tional connectivity analyses. Previously, this method has been
utilized to investigate the parcellation of networks associated
with a number of brain regions, such as the anterior cingulate
(Margulies et al., 2007), medial-temporal cortex (Roy et al.,
2009; Kahn, Andrews-Hanna, Vincent, Snyder, & Buckner,
2008), posteromedial cortex (Cauda et al., 2010; Margulies
et al., 2009), medial frontal cortex (Kim et al., 2010), cerebel-
lum (OʼReilly, Beckmann, Tomassini, Ramnani, & Johansen-
Berg, 2010; Krienen & Buckner, 2009), and insula (Cauda
et al., in press; Deen, Pitskel, & Pelphrey, in press). The data
and analyses in the present study offer an alternative tech-
nique for simultaneously investigating multiple sets of func-
tional brain networks, as well as a more quantitative method
for querying the functional significance associated with those
sets of networks.

Implications for Neuroinformatics

These results suggest that the current neuroinformatics
methodology offers a wealth of opportunities for gener-
ating novel brain–behavior hypotheses and stimulating
future research studies. In addition, the coupled analyses
of spatial and behavioral metadata from the BrainMap
database generated an ordering strategy for human be-
haviors and the tasks that drive them and provided a
potential framework for future development of a cogni-
tive ontology (Poldrack, 2006; Price & Friston, 2005).
Neuroimaging ontology development, particularly rele-
vant to human cognition and behavior, is relatively
underdeveloped in comparison with other large-scale
biomedical fields that rely heavily on informatics, such
as genomics ( Jones, Pizarro, Spellman, Miller, & FuGE
Working Group, 2006; Whetzel et al., 2006). This repre-
sents a critical gap for the neuroimaging community be-
cause the development of computer-based knowledge
representations capable of automated reasoning across
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concepts in cognitive neuroscience will likely encourage fu-
ture large-scale data-driven meta-analyses similar to, but
more powerful than, what has been accomplished here.

The current analysis provides evidence that the overall
design and scope of the BrainMap taxonomy can support
development of a brain–behavior ontology. However, we
observed limitations in which BrainMap terms did not
fully capture the functional properties of a network, sug-
gesting that future metadata expansion is warranted. For
example, Figure 6 illustrates the lack of strong metadata
peaks across ICN 14 in the cerebellum and ICN 5 in the
midbrain. This imprecision was most notable for ICN 9,
which revealed an extremely small number of positive
metadata correlations accompanied by a large extent of
negative correlations. As previously noted, these ambigu-
ous results may not be because of term granularity but
rather classification techniques across experimental con-
trasts, as demonstrated in the reduced functional specia-
lization of the networks associated with visual processing
(ICNs 11 and 12). A few BrainMap terms did not strongly
map to any specific network (e.g., color discrimination),
whereas some classes mapped equally well to multiple
networks. This was exemplified in sequence recall and
motor learning, which strongly mapped to both ICN 6
(SMA) and ICN 8 (hand region of primary motor cortex)
and potentially implicates the multinetwork involvement
across different components of action execution. Future
work will also involve expanding the BrainMap taxonomy
to ascertain if functionally significant network differences
can be discriminated at greater levels of resolution. Data-
driven refinement of classes and related terms may be
accomplished by applying text-mining analyses directly
to publications reporting the experimental results that
contribute to each network. Such a strategy would retain
the strengths of the present analysis by driving ontology
development in the context of ICNs but improve the cur-
rent framework by introducing author-defined terms origi-
nating from domain-specific knowledge.

Similarly, the extent of functional insight to be realized
from BrainMapʼs metadata correlations is potentially lim-
ited by the ontological complications of developing a for-
mal representation for functional neuroimaging results.
For example, a word generation experiment may utilize
a silent reading baseline, whereas another, a resting base-
line, yet both of these experiments will be coded in
BrainMap under the same paradigm class regardless of
the different activation patterns that are to be expected
from these different contrasts. In the current analysis,
we did not attempt to disentangle this ambiguity, which
potentially limits our results. It is feasible that, using our
above example, the word generation results were poten-
tially split across multiple components, which would
mean that the functional significance of different control
conditions was not identified. However, given that each
contrast is coded as utilizing either a low-level or high-
level baseline condition, future analyses may be pursued
to examine the effect of including this parameter when

interpreting ICA results. It is highly possible that dissoci-
able network patterns may be observed that reflect the
different processes that are isolated for low-level versus
high-level contrasts.

Data Sharing

The network images and associated metadata generated
in this study have been made available for download
(brainmap.org/icns) to serve as a shared community re-
source for interpreting the functional significance of future
resting state results. In addition, they may be useful as
masks for seeding specific a priori cortical regions or net-
works of interest in prospective neuroimaging studies or
as a technique for circumventing the inherent problems
associated with double dipping (Kriegeskorte, Simmons,
Bellgowan, & Baker, 2009). Coordinate-based results that
were analyzed to generate maps of intrinsic connectivity
are available in the BrainMap database and can be accessed
using the Sleuth application (brainmap.org/sleuth).
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