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Review
Glossary

Amyotrophic lateral sclerosis (ALS – also called Lou Gehring’s disease):

progressive atrophy of all voluntary muscles due to degeneration of motor

neurons at the motor cortex, brain stem, and spinal cord.

Anterior insula: evolutionarily old cortical area located deep within the sylvian

fissure. Often used in neurofeedback experiments because of its strong

relationship with perception of emotions and pain.

Blood-oxygen-level-dependent (BOLD) response: a magnetic resonance ima-

ging (MRI) contrast of blood oxyhemoglobin and deoxyhemoglobin. Higher

BOLD signal intensities arise from increases in the concentration of

oxygenated hemoglobin and decrease in the concentration of deoxyhemoglo-

bin during brain activity.

Brain–machine interface (BMI): control of an external device or computer

(brain–computer interface, BCI) with brain activity alone. Neurofeedback is

often used to train BMI control.

Completely locked-in syndrome (CLIS): a cognitively intact person without any

peripheral motor control.

Curare: a plant alkaloid which blocks muscle nicotine receptors and thus

causes paralysis, including paralysis of the respiratory muscles. South

American natives killed their prey with curare at the tips of arrows.

Deep brain stimulation (DBS): deep brain stimulation delivers electrical

stimulation through a chronically implanted electrode in a target region of

the brain. It has evolved from an experimental procedure to a successful

reversible surgical treatment for motor disorders (Parkinson’s disease, tremor,

dystonia), chronic pain, and incipiently for psychiatric conditions (obsessive

compulsive disorder, treatment-resistant depression).

Discriminative stimulus (SD): stimulus or context present during a rewarded

response.

Effective connectivity: represents the direction of influence between brain

regions. In fMRI, effective connectivity techniques usually include Granger

causal mapping, mapping based on psychophysiological interactions, struc-

tural equation modelling, and multivariate autoregressive modelling.

Extinction (Pavlovian): progressive weakening of a learned response during

repetitive presentation of a conditioned stimulus without the unconditioned

stimulus (in classical Pavlovian conditioning).

Extinction (operant): progressive weakening of a learned response (operant)

after repetitive responding without occurrence of the anticipated effect.

Functional connectivity: refers to the correlation or partial correlation of time-

series of brain signals during a task or rest. This measure takes into account

neither causality (the direction of information flow) nor whether structural

connections between two brain regions are direct or indirect.

Habit learning (synonymous with skill learning): acquisition and maintenance

of motor acts in memory. A form of implicit learning because it requires no
Self-regulation and voluntary control of circumscribed
brain regions using real-time functional MRI (rt-fMRI)
allows the establishment of a causal functional link
between localized brain activity and behavior and cog-
nition. A long tradition of research has clearly shown the
brain’s ability to learn volitional control of its own activ-
ity and effects on behavior. Yet, the underlying neural
mechanism of self-regulation is still not fully under-
stood. Here, we propose that self-regulation of brain
activity is akin to skill learning and thus may depend
on an intact subcortical motor system. We elaborate on
the critical role of the basal ganglia in skill learning and
neurofeedback, and clarify that brain-self-regulation
need not be an explicit and conscious process as often
mistakenly held.

Neurofeedback and brain plasticity
Neurofeedback (see Glossary) is defined as the learned
change of a particular neural signal or a combination of
neural signals when feedback and reward of these signals
are repeatedly presented to the organism. When Joe
Kamiya and colleagues published the first report on bio-
feedback of the alpha waves of the human electroencepha-
logram (EEG) in 1969 [1], the paper triggered widespread
interest not only in the psychophysiological and neurosci-
entific community, but more so in the public and in the
clinical community. The same year Eberhard Fetz demon-
strated operant-reward learning of cellular spiking in a
monkey: the monkey was rewarded for an increase in
neuronal firing recorded from microelectrodes in the motor
cortex [2] and learned to activate and deactivate the
responses of that cell in isolation, without activating or
deactivating the whole brain. These complementary
demonstrations of neurofeedback stimulated the notion
of unlimited plasticity of the mammalian brain and created
hope for the treatment of neurological and neuropsychiat-
ric disorders with learned self-regulation of the disordered
brain regions. However, as often is the case in the history of
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the biological sciences, the road to clinical success turned
out to be much longer and stonier than originally expected
(Box 1). Only neurofeedback of intractable epilepsy [3]
and attention deficit–hyperactivity disorder (ADHD) [4]
active-explicit and conscious search for reproduction and recall.

Neurofeedback: an organism receives continuous information about its own

brain activity.

Structural connectivity: represents the physical connections existing between

neurons or brain regions. One well known type of physical connection between

neurons or brain regions is the axon or a group of axons (axonal bundle).
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Box 1. The curarized rat tragedy: motor mediation and neurofeedback

Until the 1960s, instrumental learning of autonomous responses was

regarded as impossible, because of the understanding that homeo-

static functions are regulated by the autonomous nervous system

(ANS) independently of voluntary, non-homeostatic motor re-

sponses. Neal E. Miller, one of the most influential and productive

experimental psychologists of the 20th century challenged the

doctrine of the autonomous nervous system as autonomous and

argued that even homeostatic functions may be learned instrumen-

tally, at least within their physiological limits (i.e., heart rate [17]).

Miller also claimed that brain self-regulation and neurofeedback may

be independent of changes in the central and peripheral motor

systems [49].

Miller, however, was aware of the crucial argument of traditional

physiology that voluntary control of autonomous changes is usually

mediated by motor–muscular changes (i.e., increase muscle tension

in order to increase heart rate). Even thinking (in the tradition of

‘motor theory of thinking’ of the 19th century [50]) and brain activity

can be considered as part of the motor system’s dynamics. To

eliminate motor mediation, Miller designed the curarized rat prepara-

tion: the awake rat, artificially respirated and fed, completely

paralyzed by curare over a long period of time and with an artificially

held constant equilibrium of most other physiological functions is

rewarded with electrical stimulation of the reward centers in the

limbic system for an increase or decrease of one specific physiolo-

gical response, for example, an increase/decrease in heart rate,

peripheral blood flow, renal blood flow, etc., without any concomitant

increase or decrease in muscle activity and without unspecific

changes of arousal or relaxation in other bodily systems [49].

Miller’s laboratory at Rockefeller University was unable to replicate

the positive effect over the years [49]. One of the main investigators,

Leo Di Cara, left the laboratory and committed suicide and the

suspicion that the early positive results were fabricated without

Miller’s involvement by his graduate student was never proved or

disproved. Miller’s name was dropped from the Academy’s list of

Nobel candidates. Barry Dworkin of the Rockefeller laboratory and

some other groups tried to replicate the results during the next 40

years without success [49]. Many explanations were tested in order to

resolve the puzzle of the curarized rat preparation, none of which

provided a satisfactory solution.

Moving from the curarized rat to the completely paralyzed locked-in

patient (CLIS), artificially respirated and fed with a more or less

constant equilibrium of many bodily systems, Kubler and Birbaumer

[51] reviewed all available published cases with CLIS where

neurofeedback and BMI were applied to achieve brain communica-

tion using operant learning of EEG waves, event-related brain

potentials, such as slow cortical potentials (SCP), and direct invasive

recording from the cortical surface (electrocorticogram). None of

these attempts, even after months of training, achieved reliable brain

control and communication, mirroring the curarized rat disaster. A

more recent study [52] found indications of systematic brain

communication using a BCI based on EEG signals in a CLIS patient

when a classical conditioning paradigm involving statements that

need to be answered with ‘yes’ or ‘no’ was used (e.g., ‘The capital of

Germany is Rome’; ‘The capital of Germany is Berlin’). The supposed

‘no’-thinking of the patient was followed by an aversive or negative

stimulus. The EEG signals were then classified to recognize ‘yes’ and

‘no’ answers from positive and negative brain responses established

on the basis of the EEG. When the same patient was later presented

with personal questions, ‘yes’ and ‘no’ answers were classified with

high accuracy, based on positive and negative brain responses

classified in some sessions only. Birbaumer et al. speculated [53] that

extinction of goal directed, output-effect oriented thinking may be

responsible for this failure and the failure to train the curarized rat.

Patients (and animals) learn that anticipated effects of a particular

intention (e.g., ‘I want to be turned around’) do not occur, and

extinction follows.

These unresolved difficulties to achieve instrumental-operant

control of brain responses (and autonomic responses) in comple-

tely paralyzed organisms may cast doubts on a skill-learning

interpretation of brain-control. A single case of a CLIS patient or of

a curarized rat learning to produce a brain response ‘voluntarily’,

after neurofeedback training that rewards the response, would

disprove the motor mediation hypothesis of neurofeedback and

strengthen a skill-learning interpretation of neurofeedback: pre-

sently, such a case does not exist. However, the fact that a CLIS

patient answers reliably with a yes or no response by producing a

change in EEG or in blood oxygenation as described above points

towards an operant ‘voluntary’ component, even in this classical

‘reflexive’ conditioning procedure. Without volition to answer such

questions, reliable responses by these completely paralyzed

patients is not possible, and responding at chance level would

result.
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responded favorably in controlled studies with neurofeed-
back of slow cortical potentials. With functional MRI
(fMRI) allowing access to deep brain systems involved in
the regulation of emotion and motivation, these hopes were
re-awakened.

In this review, we first present a theoretical framework of
the learning mechanism that underlies neurofeedback and
then discuss the effects of neurofeedback of the rt-fMRI
blood-oxygen-level-dependent (BOLD) response on behav-
ior. Finally, we describe the effects of neurofeedback of local
BOLD changes on neurological and psychiatric disorders.

Methodology of rt-fMRI-based neurofeedback
An rt-fMRI neurofeedback system performs the following
functions in real-time: brain signal acquisition from an MR
scanner, signal processing for extracting relevant features
from the region(s) of interest, computation of feedback and/
or reward, and presentation of this feedback/reward to the
subject (Figure 1). Separate computers connected by a local
network typically handle these different functions. An echo
planar imaging sequence is used to acquire whole brain
images from experimental subjects. With this technique,
the three-dimensional brain is divided into a number of
two-dimensional slices of specific thickness (e.g., 5 mm)
2

with a specific gap (e.g., 1 mm) between the slices. The
real-time operation requires that feedback be produced
immediately after each set of whole-brain images is ac-
quired for each time point (usually 1–2 s). After signal
acquisition for each time point, the reconstructed images
are transferred to another computer, where the images are
pre-processed to improve the signal-to-noise ratio. After
the images are generated, the rt-fMRI software performs
statistical analysis and generates functional maps. Brain
activation in regions of interest is then used for computa-
tion of feedback and reward in various ways: from simple
arithmetic sums and differences of average activation
levels to complex spatio-temporal patterns. Feedback is
most commonly presented visually and in a variety of
forms, including functional maps, continuously updated
curves, graphical thermometers that display activity or
virtual reality immersive environments. For a detailed
review of the methods, see [5–7]; see also Box 2 for rt-fMRI
methodological advances.

Mechanisms of brain regulation and neurofeedback
Learning the skill to regulate one’s own brain activity

Skill learning involves a discriminative stimulus (SD) that
activates response planning, the actual response, and an



Box 2. Rt-fMRI methodological advances

Although the majority of the rt-fMRI neurofeedback studies have

aimed at training individuals to self-regulate circumscribed brain

regions, further advances have enabled feedback of functional

connectivity between brain regions [55]. Even more intriguing are

studies that have employed pattern classification approaches

developed in the field of machine learning to train individuals to

self-regulate the spatio-temporal patterns of the specific circuitry

involved in motor function, emotion, and perception [20,56,57].

These studies have established that people can learn to regulate

patterns in a specific manner that has behavioral consequences.
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effect (reward or punishment) that is time contingent upon
the response. The response plan is modified based on the
difference between the anticipated effect and the actual
effect [8]. Skill learning curves, like other forms of proce-
dural learning and repetition priming, usually follow a
positive exponential function [9]. During the neurofeed-
back-based learning of metabolic or neuroelectric
responses, no response plan exists at the start of training,
because the response and its physiological and behavioral
correlates are not in the repertoire of the organism’s mem-
ory. Further, such responses usually do not fulfill a moti-
vational drive-modulating function – except if brain
regions with homeostatic properties are modified. There-
fore, they need external reinforcement in order to become
stable habits. Sensory feedback of the target physiological
response acquires its anticipated effect by motivating
learning from instruction (in humans) or through associa-
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Figure 1. Overview of an rt-fMRI neurofeedback system. Ongoing BOLD signals from t

visual feedback (auditory or haptic feedback is also possible). Feedback can be provided

functional connectivity measures from two or more brain regions (e.g., between Broca

distributed brain regions that represent a network (e.g., fear network). Real-time feedba

thermometer) or in the form of a complex and immersive virtual reality environment. P
tion with primary or secondary rewarding or punishing
stimuli. As training progresses, however, an idiosyncratic
response plan develops, usually hidden from the experi-
menter: participants use imagery and other abstract cog-
nitive activities, which become more and more ‘pruned’
from irrelevant response elements until a final response
concept reliably evokes the desired effect [10]. The hidden
nature and idiosyncrasy of the initial response plan leads
to large differences in variability of the learning curves in
neurofeedback experiments, particularly during the initial
training phases. Visual or auditory feedback stimuli that
represent the response strength of the desired brain re-
sponse are used most frequently in neurofeedback. Instruc-
tions to the participant may play a critical role in self-
control of brain activity: if ambiguous instructions are
given (e.g., ‘try to produce an increase of the red colored
bar on the screen’), the initially unstructured response
plan may appear even less specific for the participant.
Ambiguities in instruction and initial responses could lead
to high variability, often extended training periods, and a
substantial rate of non-learners in neurofeedback [10,11].
Neurofeedback of the BOLD signal and other metabolic
brain signals, for example, as measured with near infrared
spectroscopy (NIRS), may produce smoother and more
exponential learning curves than neuroelectric responses,
comparable to motor skill acquisition, because feedback
from the brain’s vascular system to the critical brain areas
responsible for skill learning (e.g., the striatum and basal
ganglia structures) constrains the abstract nature of the
anner
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he participant, lying in the MR scanner, is acquired, processed, and presented as

 as changes in amplitude from individual brain regions (e.g., primary motor cortex),

’s and Wernicke’s areas), or decoded spatio-temporal patterns of brain activity in

ck can be provided as a simple increase/decrease in levels of activation (e.g., in a

art of this figure is reproduced, with permission, from [54].
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Figure 2. Brain reorganisation due to rt-fMRI neurofeedback training of the anterior insula [13]. The results depicted in these two panels are from a multivariate analysis of

the data from a previous study [14], in which participants were trained to regulate their own BOLD responses in the anterior insula with rt-fMRI feedback. (A) Neurofeedback

training from session 1 to session 5 (top to bottom; sessions 3–4 are not shown) results in focusing of brain activity. (B) This effect is represented quantitatively as a

decrease in the number of activation clusters and simultaneous increase in the average distance between the clusters. Reproduced, with permission, from [13].
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skill to be acquired [12]. The brain processes information
from its vascular system, but it has no sensors for its
neuroelectric responses. Changes in blood oxygenation,
flow, and pressure are readily processed in the brain
and thus may compensate for the lack of motor response
components in brain self-regulation and allow faster
‘sharpening’ of the response properties and pruning of
irrelevant response components through feedback and
reward. Figure 2 shows different aspects of the change
in brain activation in participants who learned to regulate
their own BOLD response in the anterior insula via rt-
fMRI feedback [13,14]. Figure 2A shows the gradual focus-
ing of brain activations, especially in and around the
anterior insula. Figure 2B shows a quantification of the
focusing effect, in terms of the number of clusters of brain
activation and the distance between the activation clus-
ters. It is evident that with increasing BOLD feedback
training, there is a decrease in the number of clusters and
an increase in the distance between the clusters.

The role of the basal ganglia in the learned acquisition of

brain control

Brain responses are learned, stored, and retained in a
manner that is comparable to a motor skill, following
the rules of implicit learning [15]. In contrast to explicit
learning, implicit learning and memory do not require
conscious and effortful search. In the neurofeedback situa-
tion, implicit learning is usually negatively defined by
providing no explicit instruction to participants as to
how they may control the brain activity represented by
the feedback stimulus, such as imagery and other mental
strategies. In animals, learned control of neuroelectric
responses that range from single cell firing [2] to cortical
EEG [16] have clearly indicated that neither instructions
nor explicit mental strategies – as far as they can be
assessed in animals – are necessary to learn brain control.
Instrumental (operant) learning of regulation of peripheral
vascular responses was also demonstrated in animal pre-
parations [17] (Box 1). A discriminative stimulus (SD) that
indicates to the animal the occurrence of a reward after the
particular physiological change is sufficient to guarantee
learning. Whereas self-regulation and operant learning of
peripheral vascular responses, such as blood pressure,
4

blood flow, vascular diameter, and blood oxygenation,
are well documented, instrumental learning of brain vas-
cular responses in animals has not been investigated, but
there is no evident reason to expect a difference in outcome
for brain vascular responses and peripheral vascularity.

The most compelling evidence for the procedural nature
of neurofeedback-based learning and the critical role of
cortical–basal ganglia loops responsible for procedural
learning in learned brain control comes from a neurofeed-
back study with rodents [12]. For motor skills, the role of
the cortical–basal ganglia loop is well established, but
brain self-regulation does not involve any movement: sub-
jects have to learn the abstract skill of changing brain
activity while motionless, to move a neuroprosthetic device
or a computer cursor without activating the motor periph-
ery. Koralek et al. [12], using intracellular recordings,
trained rats to modulate the firing rate of two adjacent
neural ensembles in the primary motor cortex (M1) in
order to obtain a reward. Modulation of activity in the
two ensembles resulted in changes in the pitch of an
auditory cursor, which provided constant auditory feed-
back of the task to the rodents. Reward was delivered when
rodents precisely increased activity in one ensemble and
decreased it in another ensemble, or vice versa, in order to
move the auditory cursor to one of two target tones. When a
successful effort was made to any of the targets, the rodent
was rewarded with a sucrose solution for one target and
with a food pellet for the other. Within 11 days of training,
rats became proficient in both tasks and exhibited typical
skill-learning acquisition rates. Omitting the feedback but
retaining the reward did not result in learning. Degrada-
tion of the food–reward contingency or degradation of
reward by satiety also rapidly impaired learning, even if
correct auditory feedback was provided. Both feedback and
reward are necessary for acquisition of the brain response
(Figure 3).

Striatal neuroplasticity in natural motor skills proved to
be critical for learning of the neurofeedback task: cross
correlations between the motor cortical cells and striatal
neurons revealed increased oscillatory coupling in the 4–
8 Hz range with learning. Finally, knockout rats that
lacked N-methyl-D-aspartate receptors (NMDARs) – nec-
essary for long-term potentiation in striatal neurons – did
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Figure 3. Skill learning in rodents. Koralek et al. [12] implanted electrodes into the brains of live rats to record the neuronal activity of the motor cortex and the striatum.

Depending on certain features of motor cortex activity, a tonal sound with a specific pitch was automatically generated. The rats learned to make the pitch of the sound rise

or fall by modifying their brain activity, because they were rewarded with sugar water or food pellets if the pitch changed successfully. By using genetically modified mice in

similar experiments, the authors showed that activity of the striatum was required for the animals to learn the task. Reproduced, with permission, from [12]..
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not learn the self-regulation task, despite intact movement
(for the role of motor mediation in neurofeedback, see Box
1). Pharmacological blockade of NMDARs in the dorsal
striatum also impaired the task in the same way.

These compelling data are complemented by earlier
fMRI-brain imaging evidence in humans during learning
of self-regulation of slow cortical potentials (SCP). Com-
paring good learners with poor learners in this neurofeed-
back task revealed activity of the basal ganglia and cortical
motor structures in proficient learners [18].The partici-
pants received visual feedback of the amplitude of their
SCP: increased cortical negativity (indicating stronger
activation of the brain at central sites) moved a cursor
up on the screen and decreased negativity moved the
curser down, both movements being proportional to the
change in amplitude of the SCP. Using neurofeedback and
brain–machine interface (BMI) training of sensorimotor
(8–15 Hz) rhythms, Halder et al. [19] demonstrated that
learned control of sensorimotor areas, which are an essen-
tial part of the cortico-basal-ganglia-loop, can be predicted
from BOLD-response increase in those areas during pre-
training motor imagery, particularly while observing
movement in others. Overall, this converging evidence
from animal and human neurofeedback paradigms
strengthens the theoretical position that brain self-regula-
tion and BMI-control can be viewed as skill learning.
Whereas an intact subcortical extrapyramidal motor sys-
tem and dorsal striatum seem to be a conditio sine qua non
for brain-regulation skill acquisition, the impact of the
peripheral and central ‘pyramidal’ voluntary motor system
remains an open question (Box 1).

Implicit nature of brain-regulation learning

Several human studies using neurofeedback of BOLD
responses with rt-fMRI have demonstrated that neither
explicit instructions nor explicit imagery and particular
mental strategies are mandatory for learned BOLD con-
trol. Shibata et al. [20] asked their healthy participants ‘to
increase the size of a green disc as much as possible’ over 6–
10 daily sessions. The size of the feedback stimulus was
determined – unknown to the participant – by the BOLD
response belonging to one of three target line orientations
of Gabor patches of the discriminative stimulus. Post-
experimental questioning clearly showed that none of
the participants was aware of the contingency between
line orientation and the feedback. However, they all
learned to improve discrimination of line orientation
through BOLD neurofeedback. Even more impressive
seems to be a demonstration by Kim and colleagues (see
[5], for a discussion of this work) that subliminal perception
of emotional faces becomes conscious after rt-fMRI train-
ing to upregulate the fronto-parietal brain network, in-
cluding visual cortex, fusiform face area, insula, and
prefrontal cortex, without any instructions. Learned down-
regulation in the same network was also possible in the
same participants, this time leading to reduced conscious
recognition of the emotional stimuli.

Behavioral effects of learned brain regulation
The emphasis in recent rt-fMRI studies has shifted from an
earlier focus on ascertaining self-regulation capability in
different brain regions to investigating the behavioral
consequences of learned regulation. Motor regions have
received much attention in these studies, indicating that
volitional modulation of motor regions could be achieved by
rt-fMRI training, with some studies showing changes in
motor function as a consequence of training [21–28].

A series of rt-fMRI experiments on manipulating emo-
tions trained individuals to up- or downregulate activity in
the anterior insular cortex [14,29] and showed that upre-
gulation leads to increase in the valence ratings of aver-
sion-inducing images, but not neutral images [30], increase
in the recognition of faces displaying the emotion of disgust
emotion, and decrease in the recognition of faces showing
happy emotion, as well as an increase in connection
strength in the emotion network [31]. Self-regulation of
5



Box 3. Future directions

Priorities for future research include:

� Investigating which feedback modality is the most suitable and

how much of feedback training is optimal for learning.

� Testing whether brain self-regulation persists following training

when feedback is not provided and whether symptom modifica-

tion is clinically significant in the long term outside the fMRI

laboratory.

� Performing animal studies that employ simultaneous microelec-

trode recordings during metabolic (i.e., BOLD) self-control learn-

ing to clarify the neurophysiological mechanism of metabolic

neurofeedback training.

� Self-regulation training of larger but anatomically clearly defined

neuronal networks and their functional connections with a

thorough measurement of specific behavioral consequences.

� Conducting systematic variations of timing and modality of

feedback and reward schedules to establish strong metabolic

neurofeedback–behavior relationships.

� Documenting stable and specific long-term effects of metabolic

neurofeedback and its behavioral consequences comparable to

DBS.

� Developing and testing experimentally more affordable alterna-

tives to fMRI, such as optical imaging (fNIRS) and EEG.

� Performing large scale multi-center controlled clinical trials with

well defined clinical groups and adequate comparison groups

receiving placebo treatment and the best available alternative

treatments, such as drug therapy, DBS, and behavior therapy.
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language-related brain regions was studied by Rota and
colleagues, who reported that upregulation of the right
inferior frontal gyrus (the homolog of left Broca’s area)
resulted in enhancement of prosodic language processing
[32] and was also simultaneously associated with a
strengthening of connectivity of this brain region to the
right prefrontal cortex [33]. Volitional upregulation is also
possible in the amygdala [34,35], whereas downregulation
of the subgenual anterior cingulate could be achieved by
positive imagery and contingent feedback, but not sham
feedback [36]. Scharnowski et al. found improvements in
perceptual sensitivity when they trained participants to
upregulate the retinotopic visual cortex with rt-fMRI neu-
rofeedback [37]. An exciting new path to motor rehabilita-
tion was suggested by Sulzer et al. [38], who obtained the
first positive results showing that the dopaminergic mid-
brain regions, namely, the substantia nigra and ventral
tegmental area, can be upregulated by rt-fMRI feedback.
An innovative use of rt-fMRI already mentioned above has
been in the operant conditioning of the brain’s response to
sub-threshold stimuli as a means of modifying conscious
perception and awareness [5].

Rt-fMRI neurofeedback in neurological diseases
deCharms and colleagues [39] investigated the clinical
impact of self-regulation of rostral anterior cingulate cor-
tex (rACC), a region putatively involved in pain perception.
Patients with chronic pain achieved volitional control of
rACC activation with rt-fMRI training and subsequently
reported a decrease in the level of ongoing pain (an effect
that was significantly larger than for control groups
trained without rt-fMRI feedback). This important study
could not be replicated by deCharms, however (personal
communication). Haller and colleagues [40] conducted a
pilot experiment in which six patients with chronic tinni-
tus were trained to reduce the activity of the auditory
cortex. Most of the patients learned to downregulate acti-
vations in the ROI aided by contingent feedback, and two of
them reported a decrease in the subjective experience of
tinnitus. Sitaram and colleagues [41] applied rt-fMRI neu-
rofeedback in two stroke patients with right hemiparesis to
achieve volitional control of ventral premotor cortex (PMv).
Participants demonstrated a progressive increase of the
BOLD signal in the PMv over the training, following which
a reduction in intracortical inhibition was evident, point-
ing towards the beneficial effect of self-regulation on motor
cortical outputs. Subramanian and colleagues [42] trained
five patients at early stages of Parkinson’s disease (PD) to
upregulate the supplementary motor area and showed a
subsequent improvement in both motor speed (in a finger
tapping task) and clinical ratings. An equal number of
patients trained without fMRI feedback information nei-
ther achieved control of the SMA nor displayed any behav-
ioral modification.

Rt-fMRI neurofeedback in psychiatric/psychological
disorders
Neuropsychiatric disorders are highly prevalent and bur-
densome conditions for which rt-fMRI neurofeedback could
offer a new therapeutic option. In a proof of concept study,
Linden and colleagues [43] used rt-fMRI neurofeedback in
6

eight patients with unipolar depression, who were
instructed to upregulate brain regions of emotion control.
Both successful regulation and a significant clinical im-
provement were observed, which were not detected in a
control group of patients trained without rt-fMRI feedback.
Sitaram et al. [44] trained six psychopaths with criminal
records to self-regulate the anterior insula. Criminal psy-
chopaths show reduced or absent activation of the fear
circuit, including the anterior insula [45]. Subjects with
higher psychopathic scores were less successful at self-
regulation than those with lower scores. Learned self-
regulation led to an enhancement in the number of effec-
tive connections in the emotional network and to a more
prominent a role of the insula as a causal source of neural
connections. No consistent behavioral changes were found,
however.

Ruiz and colleagues [31] showed that patients with
paranoid schizophrenia were able to learn volitional con-
trol of the anterior insula and showed an improvement in
the recognition rate of disgusted faces, in line with previous
evidence of the role of the insula in face disgust recognition.
Li and colleagues [46] trained ten nicotine-dependent
smokers with rt-fMRI in a ‘reduce craving paradigm’
and reported that participants successfully managed to
reduce their craving response towards craving-inducing
pictures, while decreasing the activation of the anterior
cingulate cortex. A significant correlation between the
induced changes in ACC activation and the corresponding
difference in craving ratings was also found.

So far, there is ample evidence that brain self-regulation
is achievable with rt-fMRI, even in severe chronic brain
disorders. However, for clinical applications, many crucial
questions still need to be addressed (Box 3). The efficacy
and cost-effectiveness of an expensive methodology like
this needs to be examined further, with larger samples and
extensive training times. Inconsistent results stress the
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need for replication of the previous findings and inclusion
of double-blind experimental designs.

Concluding remarks
Further animal studies, preferably with non-human pri-
mates, are necessary in order to clarify the relationship
between BOLD self-regulation (BOLD neurofeedback) and
intracellular and extracellular activities of the involved
neuronal structures (Box 3). In particular, firing patterns
and local field potentials (LFP) with simultaneous mea-
surement of BOLD should establish a causal chain be-
tween voluntary regulation of BOLD and its cellular
bases. The experimental realization of such simultaneous
recordings in the awake monkey is difficult and only one
laboratory has published extensively about neuro-vascular
coupling using such a paradigm [47]

The contribution of physiological mechanisms and
structures of the different components of the motor sys-
tems to brain-regulation learning need to be clarified.
Consistent with a skill learning theory of neurofeedback,
blockade of basal ganglia structures eliminated voluntary
operant control of cortical spiking [12]. However, the spe-
cific role of the cortical, spinal, and peripheral motor
system in brain-regulation learning is still not understood.
The curarized rat with paralyzed peripheral motor output
and the completely locked-in patient suffering from amyo-
trophic lateral sclerosis (ALS) destroying the motor system
at all levels except the basal ganglia were unable to learn
neuroelectric responses, but may acquire learned control of
the vascular motor system underlying BOLD and brain
blood oxygenation (Box 1).

Before neurofeedback of metabolic brain activity becomes
a viable supplement to or even an alternative for deep brain
stimulation (DBS) [48], it has to demonstrate efficiency in
large controlled outcome studies or – as happened in the past
with DBS – through cumulative evidence of clinically mean-
ingful long-term (over years) effects outside the clinic or
laboratory. Comparable to DBS in Parkinson’s disease, the
clinical evidence for rt-fMRI neurofeedback should be gath-
ered in disorders for which no efficient long-term treatment
is available (e.g., drug resistant generalized temporal lobe
epilepsy or chronic stroke without residual movement) or
when undesired side-effects severely hamper outcomes,
such as neuroleptic drugs in schizophrenia, methylpheni-
date (ritalin) in children with ADHD, or electroconvulsive
shock treatment in depression. For psychological and psy-
chiatric disorders, control groups receiving the established
psychotherapeutic (usually behavior therapy) or pharmaco-
logical treatment are mandatory. The same recommenda-
tion holds for metabolic neurofeedback as a strategy to
enhance cognitive functions, such as memory, attention,
and motor skills (neuroenhancement). Well-researched
training strategies for cognitive enhancement should serve
as controls. DBS is usually active 24 hours a day over
months and years, wherever the patient lives and whatever
he/she does. Neurofeedback cannot be expected to produce
comparable effects after a few training sessions in a sterile
laboratory environment.

Metabolic neurofeedback has now received its healthy
birth certificate through a sufficient number of excellent
proof-of-principle studies reviewed here. Whether this
healthy baby survives and grows depends more on nutri-
tional support (funding) and educational persistency (long-
term controlled outcome studies).
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