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Recent advances in signal analysis have engendered EEG with the status of a true brain mapping and brain
imaging method capable of providing spatio-temporal information regarding brain (dys)function. Because
of the increasing interest in the temporal dynamics of brain networks, and because of the straightforward
compatibility of the EEG with other brain imaging techniques, EEG is increasingly used in the neuroimaging
community. However, the full capability of EEG is highly underestimated. Many combined EEG-fMRI studies
use the EEG only as a spike-counter or an oscilloscope. Many cognitive and clinical EEG studies use the EEG
still in its traditional way and analyze grapho-elements at certain electrodes and latencies. We here show
that this way of using the EEG is not only dangerous because it leads to misinterpretations, but it is also large-
ly ignoring the spatial aspects of the signals. In fact, EEG primarily measures the electric potential field at the
scalp surface in the same way as MEG measures the magnetic field. By properly sampling and correctly ana-
lyzing this electric field, EEG can provide reliable information about the neuronal activity in the brain and the
temporal dynamics of this activity in the millisecond range. This review explains some of these analysis
methods and illustrates their potential in clinical and experimental applications.

© 2011 Elsevier Inc. All rights reserved.
Introduction

Over 80 years ago the EEG was first described with the promise of
it providing a “window into the brain” (Berger, 1929). However, the
transparency of this window has been obscured in the sense that
the sources in the brain that produced the signals on the scalp were
not readily visible. Recent advances in EEG recording technology
and EEG analysis methods made this window much more transpar-
ent, and the signal–source relationship has become clearer. In this re-
view we overview some of the basic methods that render EEG a
comprehensive and powerful brain-imaging tool that directly maps
the brain neuronal activity with reasonable spatial and superb tempo-
ral resolution.

During the largest part of the 80 years of existence of EEG, and un-
fortunately to some extent still today, the analytic potential of EEG
has not been fully exploited. On the contrary, several serious misun-
derstandings about the generation of the scalp potentials have led
to wrong interpretations of the data and to claims about brain func-
tions that were later falsified by intracranial recordings, lesion stud-
ies, or neuroimaging methods; thereby severely discrediting EEG.
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Such misinterpretations were mainly due to the ignorance of im-
portant physical principles that underlie the measurement of electric
potentials at the scalp surface. Most important is the fact that a given
electrode on the scalp does not record solely the neuronal activity di-
rectly underlying it. Rather, every electrode picks up signals from dif-
ferent sources that can eventually be quite distal. This is because the
electric field of each active source in the brain spreads in all directions
and is thus picked up to a variable extent by each electrode. This also
holds for the reference electrode against which the potential at one
scalp electrode is compared. Fluctuation of the voltage at the refer-
ence electrode will lead to changes of the potential at the active elec-
trode even if the voltage at that point was actually stable. There is no
point that is electrically silent and could be considered as true zero
potential. Thus, changing the reference position will change the abso-
lute potential at the active electrode because EEG forcibly entails re-
cording potential differences. This reference-dependent feature of
EEG potentials is often cited as a major drawback of EEG as compared
for example to MEG (Hari, 2011).

However, it is important to note and to insist on the fact that the
topography of the potential field is completely independent of the
choice of the reference (Geselowitz, 1998). Because it is the topog-
raphy of the electric or magnetic field that is the only relevant infor-
mation used for electric or magnetic source imaging, the so-called
“reference-problem” of the EEG effectively does not exist and a
search for an optimal reference (Gencer et al., 1996) for source im-
aging is meaningless.
utilization of EEG as a brain imaging tool, NeuroImage (2012),
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In this article we overview EEG analysis methods that are based on
the understanding of the biophysical principles that lead to the po-
tential field on the scalp and that are quantifying the properties of
this potential field in time and in space. Analysis methods that are
based on single channel waveforms are not considered here, because
such analyses are ambiguous with respect to 1) the underlying gener-
ators as well as more general neurophysiologic causes and 2) the sta-
tistical confidence that can be placed on them (Michel et al., 2009;
Murray et al., 2008; Murray et al., 2009).

Principles of EEG spatial analysis

The EEG is traditionally analyzed in terms of temporal waveforms
at certain channels, looking at power of rhythms in the spontaneous
EEG, at amplitude and latency of the peaks and troughs in event-
related potentials (ERPs), or at particular grapho-elements in patho-
logical or sleep stages. There is no doubt that this type of analysis
has provided many important insights regarding brain functioning
in health and disease, but it has not been considered as an imaging
method in the sense that one could infer active areas in the brain gen-
erating these waveform features.

From a biophysical point of view, a given active electrode on the
scalp measures the electric field that is generated by the sum of the
momentary post-synaptic potentials in the brain. Due to volume con-
duction these electric fields spread in the brain and reach in attenuat-
ed form the scalp surface. Each electrode measures a local part of this
field. Accordingly and with a sufficient number of electrodes distrib-
uted all over the scalp, this electric field can be measured and recon-
structed as a so-called scalp potential map. A newmap is generated at
every time instant in the millisecond range (whatever the sampling
rate of the EEG amplifiers). It is a physical law that whenever the
map topography has changed, the distribution and/or orientation of
the active dipoles in the brain have changed (Vaughan, 1982)
(Lehmann, 1987).

Since its inception, the MEG community uses this topographic
framework for the analysis of the signals. Instead of waveforms, the
MEG community generally looks at the properties of the magnetic
field outside the head and infers the sources and the temporal dy-
namics of these sources in the brain (Salmelin and Baillet, 2009;
Williamson et al., 1991). It has been recognized for a long time that
the EEG can be analyzed in the same way as the MEG; namely using
topographic maps and spatial pattern analysis methods as well as
source localization techniques (Wong, 1991). While the traditional
waveform-based analysis still dominates in the EEG community
(Luck, 2005), the increasingly common use of high-density EEG sys-
tems with more than 100 electrodes (Tucker, 1993) both in experi-
mental and clinical settings leads to an increasing request for such
spatial analysis methods for the EEG as well (Fig. 1).

There are several reasons for basing analyses on topographic in-
formation and more generally for treating the data from the entire
electrode montage as a multivariate vector. First, topographic mea-
sures are reference-independent. The shape of the electric field at
the scalp will not change even if one chooses another reference (cf.
Fig. 3 in Michel et al., 2004b). It only shifts the zero line without
influencing any spatial characteristics of the field. Second, topograph-
ic information has a direct neurophysiologic interpretability. Physical
laws dictate that topographic differences are indicative of changes in
the configuration of the active cerebral sources (though the converse
need not be true). Therefore, analysis methods that test for differ-
ences in the topography of the scalp potential field are directly reveal-
ing instants where the configuration of the neuronal generators
changed or differed between conditions. Third, multivariate analyses
allow for taking better advantage of the added information provided
by high-density electrode montages while also retaining statistical
rigor. Analyses can be formulated in a way that effects of strength
and differences between conditions due to changes in sources'
Please cite this article as: Michel, C.M., Murray, M.M., Towards the
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configuration can be disentangled and treated independently
(Murray et al., 2008). Fourth, EEG mapping is the precursor for EEG
source imaging. Using sophisticated source and head models, the lo-
cation of the generators that gave rise to the scalp potential map
can be estimated with high reliability and reasonable precision
(Michel et al., 2004b). In what follows, some basic topographic anal-
ysis methods are briefly explained before illustrating their use in
the analysis of spontaneous and stimulus-related activity.

Topographic analysis the scalp potential field

The voltage potential field on the scalp is characterized by its to-
pography (“landscape”) and its strength (“hilliness”). The field to-
pography is directly related to the location and orientation of the
underlying sources, while the field strength is related to the amount
of simultaneously (and synchronously) active sources. From an
analytical standpoint, these parameters can be examined
independently.

Global Field Power
The strength of the potential field can be quantified by a single

measure termed Global Field Power (GFP; (Lehmann and Skrandies,
1980)). GFP is equal to the standard deviation across electrodes at a
given instant in time. Because it is a global measure of response
strength, GFP provides no information regarding modulations in
source configuration or which electrodes are stronger/weaker. Statis-
tical analysis of GFP between conditions can give information on dif-
ferences of the global amount of synchronized activity at any given
moment in time. The GFP measure can also be used to identify
“events” that are consistent across trials in terms of the map topogra-
phy (Koenig and Melie-Garcia, 2010; Tzovara et al., 2012). This ap-
proach, labeled topographic consistency test, relies on the
observation that GFP of an averaged response is impacted by the spa-
tial topographies of the single measurements contributing to the av-
erage. Only if the topographies were similar across trials will the
GFP of the average map be elevated compared to an empirical distri-
bution identified using a randomization test that shuffled the data at
each electrode from each measurement contributing to the average.
Significant GFP increases and thus the existence of a component
that is above noise can be determined. The topographic consistency
test can thus provide information about the quality of ERP recordings
in terms of signal-to-noise ratio, the variability within experimental
conditions, and most importantly about time-periods within an
epoch where the topographies at a given latency are consistent across
observations (i.e. subjects or trials).

Global map dissimilarity
Different map topographies directly indicate different generator

configurations in the brain. Given this physical fact, one aim of the to-
pographic analysis is to test for topographic differences between con-
ditions, because it directly permits the conclusion that the underlying
generators changed. Topographic differences independent of strength
can be quantified using the so-called global dissimilarity index
(Lehmann and Skrandies, 1980). It is defined as the root mean square
of the difference between two normalized maps (i.e. divided by the
GFP). It is a one-number measure of the dissimilarity between two
electric fields and can range from 0 to 2, where 0 indicates topograph-
ic homogeneity and 2 topographic inversion. This measure can be
used to assess statistically significant topographic differences be-
tween conditions or groups through non-parametric randomization
tests using uni- or multi-factorial designs (Murray et al., 2008;
Koenig et al., 2011).

An alternative approach is to measure the spatial correlation be-
tween maps, i.e. to test whether two maps are similar. It has to be
noted, however, that similar maps do not directly indicate that the
underlying generators were the same. The correlation coefficient is
utilization of EEG as a brain imaging tool, NeuroImage (2012),
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Fig. 1. Progression of EEG data acquisition and analyses. (A) Electrode montages, including those suitable for pediatric and clinical populations, now cover the head with b2 cm
inter-electrode spacing and including >100 channels. (B) With increasing numbers of channels, the visualization of the data has progressed from waveform representations
(and analyses) to spatial/map representations (and analyses). (C) Source estimation methods have similarly progressed from a limited number of equivalent current dipoles within
a spherical head model to distributed source estimations within realistic head models.
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directly related to the spatial dissimilarity measure (i.e. it equals (2-
DISS2)/2) (Brandeis et al., 1992).

Topographic map classification
Different groups have proposed to separate different distinct to-

pographies in a time series of multichannel EEG data using classifica-
tion algorithms. Pascual-Marqui et al. (1995) proposed to use a
cluster analysis to determine the predominant map topographies in
a given dataset. Cross-validation and other criteria were proposed to
determine the optimal number of cluster maps (Brunet et al., 2011).
Popular alternatives to the cluster analysis, including principal com-
ponent analysis (Skrandies, 1989; Spencer et al., 2001; Pourtois et
al., 2008) and independent component analysis (Makeig et al.,
1997) have been proposed to determine the most dominant spatial
components in EEG or ERP time series. Independent of the classifica-
tion algorithm used and the advantages and limitations inherent to
each of them, all these approaches aim to describe the multichannel
Please cite this article as: Michel, C.M., Murray, M.M., Towards the
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EEG as a set of potential maps with different time courses (De Lucia et
al., 2010). Subsequent analysis steps then allow determining when
eachmap is dominantly present andwhich of them differs between ex-
perimental conditions or between groups. Results of such analysis can
directly be interpreted as being due to different generator configura-
tions in the brain.

EEG source imaging

Once the EEG is recognized as a metric of the brain's electric fields
quantifiable at the scalp via high-density montages, it is easily seen
how EEG can in turn provide information regarding its underlying
generators. However, this version of the inverse problem has no
unique solution. Infinite number and configurations of neuronal
sources can lead to same scalp potential map. This is referred to as
the non-uniqueness of the inverse problem in EEG/MEG. Due to this
non-uniqueness, a priori assumptions that are based on physiological
utilization of EEG as a brain imaging tool, NeuroImage (2012),
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and biophysical knowledge about source generation and propagation
have to be incorporated to reduce the number of unknowns and to
make the problem solvable. The correctness of these assumptions de-
termines the correctness of the results. Over the last years EEG source
localization algorithms have been evolved from single dipole iterative
searching methods (Fig. 1) (Scherg, 1990) to comprehensive 3-
dimensional distributed source estimations (Pascual-Marqui et al.,
2009). Sophisticated realistic head models based on anatomical infor-
mation derived from MRI scans have further advanced the precision
of source localization. It is beyond the scope of this review to detail
the different source localization methods. Several comprehensive re-
views on this topic exist (Baillet et al., 2001; He and Lian, 2005;
Michel and He, 2011; Michel et al., 2004b; Pascual-Marqui et al.,
2009; Sekihara and Nagarajan, 2004). It is without any doubt that
the precision and the spatial resolution of source localization with
high-density EEG and head models with realistic geometry are very
high and allow to directly image the neuronal activity in the brain
in real time non-invasively. Many experimental and clinical studies
have utilized these methods and have validated the correctness of
the localization by other imaging methods or by direct intracranial re-
cordings. Selected examples will be shown below in the application
sections.

A long-lasting discussion concerning source localization with
MEG and EEG concerns the localization precision of EEG as com-
pared to MEG. Because of the distortion of the electric field by the
different extra-cerebral tissues, it is still often claimed that MEG
has advantages over EEG in source identification (e.g. Hari, 2011).
However, there is no direct evidence for this claim. On the contrary,
EEG has much higher sensitivity than MEG. EEG detects all source
orientations equally well, while MEG is insensitive to radially-
oriented sources, and EEG can detect deep sources, while MEG can
detect only superficial sources (Ahlfors et al., 2010; Malmivuo,
2012). However, sufficient number of sensors, realistic head models
and correct conductivity values are needed to properly exploit the
localization capabilities of EEG (Brodbeck et al., 2011; Malmivuo,
2012; Ryynanen et al., 2006).

Connectivity analysis

The question of how brain regions in large-scale networks com-
municate with each other is of increasing interest in neuroimaging re-
search. Methods to estimate connectivity in networks have been
developed and are increasingly applied to fMRI as well as EEG and
MEG data (Stephan and Friston, 2011; Kiebel et al., 2009). Because
of the high temporal resolution of the electrophysiological measures
and the fact that they directly measure synchronized neuronal activ-
ity across a wide range of frequencies, functional connectivity mea-
sures are of particular interest for the EEG and MEG communities.

A series of methods exist to determine the relationship between
time series measured at two different nodes of a network. Calculation
of cross-correlation or phase synchronization between two signals is
most common. More recently, effective connectivity measures that
allow capturing causal relationships and directionality within brain
circuits have been introduced (Kaminski and Blinowska, 1991).
Most of these latter methods are based on the Granger theory of cau-
sality (Granger, 1969). Multivariate methods such as structural equa-
tion modeling, partial directed coherence, and directed transfer
function are among the most popular methods (Astolfi et al., 2007).
All these analysis procedures are based on frequency transformation
of the signals. It is important to note here that such connectivity anal-
ysis is problematic when applied to the signals measured on the scalp
electrode, because of the spreading of the electromagnetic signals
from the neuronal sources in the brain to the sensors on the surface,
and because of the influence of the reference on phase measures. Co-
herence or phase synchrony analysis between two electrodes on the
scalp gives ambiguous information and cannot be interpreted as
Please cite this article as: Michel, C.M., Murray, M.M., Towards the
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connectivity between areas underlying the two electrodes (Fein et
al., 1988; Guevara et al., 2005; Hu et al., 2010; Schiff, 2005). As Steven
Schiff put it, “There is far too much literature within the past decade
that calculated phase synchronization from common-referenced
EEG.” (Schiff, 2005, page 315).

The ambiguity of coherence and phase analysis of the potentials
between scalp electrodes can best be solved by assessing functional
connectivity between time series extracted from EEG inverse solu-
tions, i.e. by applying the connectivity algorithms to signals in the
source space instead of the signal space. Obviously, only full 3-
dimensional distributed inverse solution should be used for this pur-
pose. Several studies have shown that functional connectivity pat-
terns of cortical activity in large-scale networks can be effectively
determined when combining EEG source imaging with frequency-
domain multivariate connectivity measures (Astolfi et al., 2005; He
et al., 2011). Recently, such connectivity measures have also been
used to study functional interactions between the brains of different
subjects called “hyperscanning” (Astolfi et al., 2010; Dumas et al.,
2010; Lindenberger et al., 2009).

Spatial analysis of the EEG at rest

In recent years the term “Resting State” has been established and
has received considerable attention in the brain imaging literature
(Fox and Raichle, 2007). It mainly refers to the coherent fluctuations
of blood oxygen level dependent (BOLD) responses in different
brain regions measured with fMRI, while the subject is at rest without
any particular stimulus or task. Using independent component analy-
sis, distinct patterns of coherent activity in large-scale networks have
been identified, called resting state networks (Damoiseaux et al.,
2006; Mantini et al., 2009). Besides the default mode network, net-
works involving predominantly visual areas, auditory areas, sensori-
motor areas, areas known to be involved in attentional processes,
and others have been described and have been shown to be reproduc-
ible across large subject populations (Biswal et al., 2010).

While these studies are fascinating and lead to a new avenue of
studies on large-scale brain networks, they have severe limitations
when it comes to the understanding of the neurophysiologic mecha-
nisms leading to these correlated BOLD responses and the functional
significance of them with respect to ongoing mental activities at rest
(Boly et al., 2008). In fact, the BOLD correlations are found in very low
frequency ranges of b0.1 Hz. This is much too slow to be relevant for
ongoing cognitive activities that change much more rapidly and lead
to different spatial patterns of coordinated networks within fractions
of seconds (Bressler, 1995; Bressler and Tognoli, 2006; Dehaene et al.,
1998).

The EEG with its very fast temporal resolution is much better suit-
ed to study the temporal dynamics of ongoing brain activity during
rest. In fact, EEG studies on spontaneous activity fluctuations have
been performed over the past several decades and have been related
to different brain states in the continuum between alert wakefulness
and deep sleep.

Multichannel analysis of the resting EEG in the frequency domain

It is widely believed that neuronal oscillations are the basic pa-
rameter that defines functioning and interaction within and between
the modules of large-scale functional networks, and thus the basic
mechanism of cognitive processing (Buzsaki, 2006; Buzsaki and
Draguhn, 2004; Singer, 1999). Consequently, the commonly used
method to analyze resting state activity with EEG is the frequency
transformation, thereby describing neuronal activity as variation of
power of brain rhythms in specific frequency bands or as uni- or
multi-variate cross-correlation and phase synchronization. This type
of analysis of the spontaneous EEG has provided many important
findings in the understanding of brain functioning and variations of
utilization of EEG as a brain imaging tool, NeuroImage (2012),
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these functions during sleep, drug intake, neuropathologies, psychiat-
ric diseases or maturation (Buzsaki, 2006; Michel and Brandeis,
2010).

As already discussed above the interpretation of the results de-
rived from frequency analysis of the EEG waveforms at the scalp elec-
trode is ambiguous, because the results are strongly influenced by the
choice of the reference. Absolute power as well as absolute phase of a
scalp EEG signal in a given frequency depends on the activity at the
reference electrode (Lehmann et al., 1986; Koenig and Pascual-
Marqui, 2009; Lehmann and Michel, 1990). The observed power as
well as phase changes when the recording reference is changed.
However, analyses in the frequency domain of EEG data that are
based on the relationship of phase and amplitude between channels
and not on absolute phase and amplitude are reference independent.
This can be easily visualized when displaying multichannel EEG data
in the complex plane in the form of sine–cosine diagrams with each
electrode representing an entry point in this diagram (Lehmann and
Michel, 1990). Inspecting such diagrams for different frequencies
shows that there is generally a phase that is predominating across
all electrodes. This result indicates that the simultaneously active
sources in the brain operate in an approximately phase-locked,
zero-delay mode, i.e. that they are synchronized (Koenig and
Pascual-Marqui, 2009). The amount of synchronization in a given fre-
quency can directly be quantified by calculating the eigenvalue of the
two first principal components based on the two-dimensional posi-
tions of the electrode-entries in the sine–cosine diagram. The more
the eigenvalue of the first component dominates the higher the com-
mon phase across electrodes. This measure has been termed Global
Field Synchronization (GFS, (Koenig et al., 2001a; Koenig et al.,
2005a)).

In order to keep the excellent time resolution of the EEG also in
the frequency domain, time-frequency analysis based on wavelets
has been used. By combining spatial cluster analysis methods de-
scribed above with time-frequency analysis, a topographic time-
frequency representation of human multichannel EEG can be
achieved (Koenig et al., 2001b). This method results in a small num-
ber of potential maps that vary in intensity as a function of time and
frequency. Such methods allow decomposing the EEG into a succes-
sion of a limited number of separate events, where each such event
is defined by a topography, by a time course, and by an oscillation
with narrowly defined frequency and phase (Studer et al., 2006).

The conventional frequency analysis of multichannel EEG in terms
of absolute power at each electrode (often labeled “quantitative EEG”
(John and Prichep, 2006)) is not only reference-dependent, but also
does not allow to estimate the sources of a given frequency in the
brain because phase information and thus polarity is discarded. In
order to perform source localization in the frequency domain, phase
information must be considered. This means that distributed inverse
solutions have to be applied to the complex three-dimensional vec-
tors. Consequently, frequency-domain inverse solutions are initially
complex (Frei et al., 2001). A special case is the fit of a single dipole
in the frequency domain. A single dipole cannot account for phase dif-
ferences between electrodes. Therefore, before fitting a single dipole
in the frequency domain, a single phase for all electrodes has to be es-
timated. Such a method has been proposed by Lehmann and Michel
(1990) using the first principal component in the complex plane
(the so-called FFT dipole Approximation).

Multichannel analysis of the resting EEG in the time domain

The EEG does not only consist of a summation of rhythmic activity
of different frequencies. It has been repeatedly shown that a large (if
not even the major) part of the EEG signal is arrhythmic (Bullock et
al., 2003; He et al., 2010) and it has been proposed that this arrhyth-
mic activity could also be involved in communication between neu-
rons (Thivierge and Cisek, 2008). It is therefore inadequate to
Please cite this article as: Michel, C.M., Murray, M.M., Towards the
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consider the EEG only as a sort of oscilloscope measurement of
brain activity.

An alternative to the conventional analysis of the EEG in the fre-
quency domain is the spatial analysis in terms of time-series of the
scalp potential maps and the variations of their spatial properties
across time (Lehmann, 1971). When inspecting such time-series of
scalp potential maps of the spontaneous EEG it becomes obvious
that the topography of the map does not randomly and continuously
change over time. Rather, the map topography remains stable for
some tens of milliseconds and then very quickly configures into a
new topography in which it remains stable again. Lehmann labeled
these periods of stable map configurations the functional microstates
of the brain (Lehmann et al., 1987). Thus the EEG map series can be
described as discrete segments of electrical stability that last for
about 100 ms, and are separated by sharp transitions. Within a
given period of stable configuration, the strength of the field can
vary, but the topography remains the same. Critically, at any given
moment, only one microstate dominates. It has been shown with dif-
ferent classification approaches that only 4 microstate classes largely
dominate the spontaneous EEG in awake, healthy adults (Strik and
Lehmann, 1993; Britz et al., 2010; Wackerman et al., 1993). These
four microstate classes have archetypical topographies that are highly
similar across subjects (Lehmann et al., 2009; Lehmann et al., 1998)
and are stable across the lifespan. One study with 496 subjects be-
tween 6 and 80 years showed that the mean durations for each of
these four microstates are around 80–150 ms (Koenig et al., 2002).
It is interesting to note that this is in the same time range as the du-
ration of the transient coherent activation within large-scale net-
works that have been repeatedly proposed in the global workspace
model of consciousness (Baars, 2002a; Dehaene and Changeux,
2004; Dehaene and Naccache, 2001), and the duration of the “percep-
tual frame” needed for conscious perception in backward masking
studies (Efron, 1970; Sergent and Dehaene, 2004). Lehmann repeat-
edly proposed that the EEG microstates reflect the different “steps”
or “contents” of information processing, i.e. that they are the basic
building blocks of the content of consciousness, the “atoms of
thoughts” (Lehmann et al., 1998). The functional microstates could
therefore represent the neural implementations of the elementary
building blocks of consciousness, i.e. the electrophysiological corre-
lates of a process of global “conscious” integration at the brain-scale
level (Baars, 2002b; Changeux and Michel, 2004).

Several different studies have examined the EEG microstates
under healthy and pathological conditions. In summary, these studies
revealed the following characteristics of the microstates: First, EEG
microstates are independent of the frequency of the EEG. The differ-
ent microstates do not dominate in specific frequency bands
(Wackerman et al., 1993), and the time course of the microstates do
not correlate with the time course of the power in certain frequency
bands (Britz et al., 2010). Second, while only a few microstate topog-
raphies dominate the healthy resting EEG, the temporal structure of
these microstates allows for a rich syntax. Thus, as Koenig puts it,
“there are not only connectivity structures that facilitate the coactiva-
tion of brain regions within a microstate, but there is another sequen-
tial connectivity where one type of brain state or mental operation
facilitates the appearance of another” (Koenig et al., 2005b, page
1019). Third, in a combined EEG-fMRI study, the time-course of the
EEG resting states was convolved with the time-course of the fMRI
BOLD signals and the resulting GLM maps were correlated with the
fMRI resting state maps derived from independent component analy-
sis (Fig. 2) (Britz et al., 2010). This study showed that each of the mi-
crostates correlated with one of the well known resting state
networks (visual network, auditory network, attention network,
self-referential network). Thus, EEG resting states are representing
the well-known resting state networks. Given the high temporal res-
olution of the EEG, this correlation now allows studying the temporal
dynamics of these resting state networks. Fourth, the reason why the
utilization of EEG as a brain imaging tool, NeuroImage (2012),
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Fig. 2. Correlation between EEG microstates and fMRI resting state networks: (A) Ten seconds of 64-channel spontaneous EEG with eyes closed. (B) EEG is depicted as a series of
scalp potential maps (seen from top). (C) Four dominant topographies can be identified at rest by means of clusters analysis. (D) Time course of the correlation of the four maps
with the EEG, showing that often only one topography is dominant at a given instant and remains stable for a certain time period of approx. 100 ms. (E) Convolution of the time
course of EEG microstates with the hemodynamic response function: the time courses of the EEG microstates remain similar after this low pass filter, indicating scale-free dynamics
of microstates (Van de Ville et al., 2010). (F) Large-scale resting-state networks identified with microstate-informed GLM analysis: each microstate correlates with one of the
well-known resting-state networks.
From Britz et al. (2010).
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EEG microstate time-series correlate with fMRI BOLD signals even
after the dramatic low-pass filtering is that the temporal structure
of the microstate is scale-free, i.e. self-similar on different temporal
scale (van de Ville et al., 2010). Such self-similarity, also called criti-
cality or fractality, appears to be a general key feature of the brain
resting-state network, allowing fast adaptations to the quickly chang-
ing environment (Sporns et al., 2004). It is interesting to note that
such scale-free or fractal dynamics is also the main characteristic of
Please cite this article as: Michel, C.M., Murray, M.M., Towards the
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the arrhythmic brain activity (He et al., 2010), though the relation be-
tween the EEG microstates dynamics and the arrhythmic activity re-
mains to be established.

Spatial analysis of multichannel stimulus-related activity

Aside from the analysis of spontaneous EEG, there is also a consid-
erable body of research that focuses on stimulus-related brain activity
utilization of EEG as a brain imaging tool, NeuroImage (2012),
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with a particular interest in how and when the brain processes specif-
ic types of information and/or generates decisions or actions in re-
sponse to external stimuli in conjunction with mental operations.
This line of enquiry into mental chronometry stems in large part
from the pioneering efforts of Donders and later Sternberg (reviewed
in Vaughan, 1990). Their overarching objective was to determine “the
speed of mental processes” (Donders, 1868) by measuring reaction
times, with the assumption that stages of processing were serial and
independent. While more recent conceptualizations incorporate par-
allel and interactive architecture into models of brain function, the
quintessential notion remains that a dynamic series of events unfolds
in response to stimuli so as to generate a decision/response. When
this notion was combined with the advent of EEG in the 1920s/
1930s, with observations of electrical activity fluctuations in response
to external stimuli when recording from the exposed cortex of ani-
mals and human patients, and with the introduction of computers ca-
pable of signal averaging, the field of sensory evoked potentials
readily emerged. The benefit of signal averaging (at the time and
even today) is that activity associated with the experimental param-
eter of interest can be augmented while background activity is dimin-
ished, facilitating quantification. Still, it should not be overlooked that
rhythmic activity was certainly apparent and noted in the spontane-
ous EEG. Nonetheless, the confluence of technological advancement
alongside increased investigation in animal models of neurophysio-
logic mechanisms of perception (e.g. the characterization of neuronal
receptive fields during the 1960s by Hubel and Wiesel) provided the
backdrop against which the event-related potential (ERP) (Vaughan,
1969) emerged as a method that provided a more objective and
quantitative means of accessing Berger's “window into the brain”.

However, a general division in how ERPs were and continue to be
utilized is also worth noting. On the one hand, some saw/see ERPs as a
correlate of mental operations that may be more precise than behav-
ioral metrics, but nonetheless only serve to validate models of human
perception/performance. Under this framework, the ERP can be con-
sidered as a sophisticated psychophysiologic measure, whose under-
lying neurophysiology is only of peripheral interest because such is
immaterial to addressing the research question focused on whether
there exists a brain correlate of a given process. On the other hand,
some saw/see the method as a way of narrowing the gap between
hypotheses generated from models based on cognitive and experi-
mental psychology (among other disciplines) and mechanistic
Fig. 3. Examples of EEG source imaging of event-related potentials (ERPs). Top row: butterfl
the peak of the different components. Bottom row: Source estimation using a distributed lin
sensory evoked potential (SSEP) after right median nerve stimulation. 2nd column: 256-ch
192-channel auditory evoked potential (AEP) after short tones. 4th column: 64-channel olf
Adapted from Lascano et al. (2009, 2010).
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information gleaned from more invasive studies in animals/humans.
For this purpose, it is insufficient to have only a marker of a process.
Rather, one must instead garner details of how the ERP itself was
generated and what produced its modulations.

This division can, in our view, be most readily noted when consid-
ering the term “ERP component” (Fig. 3). When ERP recordings were
performed with one recording and one reference electrode, the defi-
nition of ERP components was uncomplicated because it was relative-
ly protected from experimenter bias. There was a single time series
with peaks and troughs that could be identified (assuming adequate
signal quality) and labeled (Walter et al., 1964; Sutton et al., 1965).
With increasing numbers of recording amplifiers (electrodes) and
greater variability in the locus of the recording reference, there was
a parallel propensity for experimenter bias in ERP component identi-
fication and statistical quantification. As intimated above, some stead-
fastly clung to waveform features and defined components
accordingly, whereas others recognized the biophysical underpin-
nings of EEG/ERPs and thus the fact that components were forcibly
spatial features of the electric field at the scalp: topography, strength,
and latency. As already detailed above for spontaneous EEG, quantifi-
cation and analyses that capitalize upon spatial features of ERPs can
provide reference-free, unambiguous, and neurophysiologically inter-
pretable results while also facilitating the restriction of data for sub-
mission to EEG source imaging.

Multichannel analysis of average stimulus-related activity

In this section we briefly overview some examples where concep-
tualizations of brain functional organization have been radically im-
pacted by the consideration and analysis of spatial features of the
ERP (as well as complementary findings from other imaging modali-
ties and recordings in animal models, though these later sources of
data are beyond the scope of the present review). We do not provide
here a treatment of how EEG spatial analysis has contributed to better
understanding induced brain activity (see e.g. recent works by Yuval-
Greenberg, Deouell, and colleagues on the importance of spatial infor-
mation in the detection of ocular-related induced gamma-band activ-
ity; (Yuval-Greenberg and Deouell, 2009, 2010; Yuval-Greenberg et
al., 2008)).

One striking example is the mismatch negativity (MMN) (com-
prehensively reviewed by Deouell, 2007; Naatanen et al., 2007).
y plot of the overlapped averaged ERP waveforms. Middle row: scalp potential maps at
ear inverse solution for each of the component maps. 1st column: 256-channel somato-
annel visual evoked potential (VEP) after full-field checkerboard reversal. 3rd column:
actory evoked potential after unilateral nostril stimulation with hydrogen sulfide.

utilization of EEG as a brain imaging tool, NeuroImage (2012),
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Originally, the MMN was thought to originate within auditory corti-
ces of the temporal lobe (Naatanen et al., 1978). This view quickly
changed to incorporate the (likely) possibility of an additional frontal
generator (Naatanen and Michie, 1979) or a set of generators
(Deouell et al., 1998; Giard et al., 1990). At first, this conjecture was
based on the use of extremely clever paradigmatic manipulations to
differentially modulate and therefore dissociate ERP components (de-
fined at the voltage waveform level mainly because at best only a few
scalp electrodes were used). Later, this was augmented by higher-
density montages and visualization of ERP topographic maps, includ-
ing current source density derivations (Giard et al., 1990; Novak et al.,
1990). These latter studies (and others) were confronted with an in-
triguing situation. Simple examination of the MMN topography
revealed a clear frontal current sink that was dissociable from current
source/sink distributions likely attributable to temporal sources. Yet,
source estimations at the time, which were predominantly based on
equivalent current dipole models, could achieve rates of explained
variance over 95% by seeding a pair of sources within superior tempo-
ral regions. No frontal sources were deemed necessary, but the
explained variance of dipole models nonetheless increased with the
addition of a frontal source (Giard et al., 1991; Schonwiesner et al.,
2007) and distributed source models likewise support there being
frontal sources (e.g. Lavoie et al., 2008; Marco-Pallares et al., 2005;
see also Tse and Penney, 2008 for combined ERP and optical imaging
results). Nonetheless, MEG studies, including simultaneous EEG-MEG
(Rinne et al., 2000) routinely failed to support there being a frontal
MMN generator (perhaps due to MEG's reduced sensitivity to
radially-oriented generators; Ahlfors et al., 2010). Hemodynamic im-
aging likewise provided conflicting evidence for frontal contributions
to the MMN (reviewed in Deouell, 2007). Despite these controversial
findings, the evidence from the ERP topography clearly points to fron-
tal (aside from temporal) generators contributing to the MMN; a con-
clusion recently supported by dynamic causal modeling of ERPs (Boly
et al., 2011; Garrido et al., 2008).

A second example where spatial analysis of ERPs has proven in-
strumental is in the delineation of the functional organization of audi-
tory processing pathways. In the late 1990s a dual-pathway model for
the primate auditory system was introduced (akin to that described
for vision; Mishkin et al., 1983), with one pathway principally in-
volved in processing stimulus identity and the other in processing
spatial information (reviewed in Hackett, 2010; Rauschecker and
Scott, 2009). Despite multiple lines of support for this general
“what/where” model in humans (as well as non-human primates),
controversy surrounded the question of the functional specificity of
each pathway as well as the spatio-temporal dynamics of the partic-
ular functional sensitivity of a given region within each pathway.
First, it was unresolved from microelectrode recordings in monkeys
(Tian et al., 2001) and hemodynamic imaging in humans (Alain et
al., 2001; Maeder et al., 2001; Warren et al., 2010; Weeks et al.,
1999; Zatorre et al., 1999) whether or not functional subdivisions
were to be considered relative or absolute. Source estimation results
from EEG and MEG were similarly equivocal, with some reporting
more lateral equivalent current dipole positions for spatial vs. seman-
tic processing (Herrmann et al., 2002) and others the reverse pattern
(Anourova et al., 2001). Second, because the time course of differen-
tial processing along putative “what/where” pathways was not inves-
tigated/reported (e.g. Tian et al., 2001), effects within a given
circumscribed brain region could not be interpreted as deriving
from either feedforward, feedback, or lateral activity. This was exacer-
bated by EEG and MEG studies that reported widely divergent laten-
cies of differential activity, though admittedly also using widely
divergent paradigms (Ahveninen et al., 2006; Alain et al., 2001;
Anourova et al., 2001; Herrmann et al., 2002). Spatial analysis of
ERPs in response to acoustically-identical sounds passively presented
either in the context of changing pitch or changing location revealed
there to be topographic differences beginning ~100 ms post-stimulus
Please cite this article as: Michel, C.M., Murray, M.M., Towards the
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onset (Fig. 4; De Santis et al., 2007; see also replication by Leavitt et
al., 2011 using naturalistic stimuli and an active paradigm). One sta-
ble microstate over the 100–160 ms post-stimulus period accounted
for responses during changes in pitch, whereas another microstate
accounted for responses during changes in location. Such effects sup-
port there being pre-attentive, if not automatic, and intrinsic engage-
ment of distinct brain networks for processing spatial and semantic
information contained within acoustic signals. Plus, because effects
manifested topographically but not in terms of response strength ar-
gues in favor of (partially) segregated functional “what/where” path-
ways and against a common network that simply modulates its gain
as a function of the relevant stimulus attribute. Finally, distributed
source estimations and statistical analyses thereof suggest that the
initial differentiation between “what/where” processing pathways
may not reside within primary or near-primary cortices but instead
within relatively higher-order parietal regions (De Santis et al.,
2007). These findings served as a springboard for investigating the
spatio-temporal functional organization and plasticity of the human
auditory system and more specifically the processing of spatial,
temporal and semantic information conveyed by sounds (reviewed
in Murray and Spierer, 2009).

Towards single-trial decoding

While the signal averaging of multiple EEG epochs that is required
for ERP calculation improves the signal-to-noise ratio (SNR) and re-
duces the influence of several varieties of physiologic and instrumen-
tal noise sources, it preserves only the subset of brain activity that is
time- and phase-locked to stimulus onset. As already mentioned
throughout this review, it is clear that the EEG contains functionally
important signals that are not time-/phase-locked to stimulus onset
and can only be studied at the single-trial level (e.g. Davis, 1939;
Knuth et al., 2006; Makeig, 2002; Shah et al., 2004). The detection
of stimulus-related activity at the single-trial level can be used for
studying the bases and significance of inter-individual variability as
well as in improving metrics of treatment/training efficacy as well
as diagnostic/prognostic specificity. Single-trial analysis methods
can likely also enhance the benefit of simultaneous EEG-fMRI record-
ings where the number of trials is often limited.

Whereas decoding approaches are well established in fMRI re-
search (reviewed in Haynes and Rees, 2006), in the EEG domain
they are mainly used in Brain–Computer Interface (BCI) applications
(e.g. Bianchi et al., 2010; Rivet et al., 2011; Sannelli et al., 2010;
Vidaurre and Blankertz, 2009) where the research objectives are
often focused on obtaining a differential metric of brain activity (e.g.
a metric discriminating intention to move left vs. right) rather than
forcibly metrics that reveal the underlying neurophysiologic process
(e.g. a metric reliably describing how the brain represents the inten-
tion to move left vs. right). Moreover, the vast majority of BCI
methods involving EEG/ERPs focus on the analysis of individual volt-
age waveforms (presumably for practical reasons linked to the objec-
tive of ease-of-use for patients), which as mentioned throughout this
review have extremely limited neurophysiologic interpretability and
statistical reliability due to their dependence on the choice of the ref-
erence channel(s).

More recently a decoding approach based on topographic infor-
mation has been proposed (De Lucia et al., 2007a, 2007b; De Lucia
et al., 2010; Tzovara et al., 2012). The single-trial decoding method
is based on multivariate statistics and consists in modeling the statis-
tical distribution of voltage topographies (defined as an N-
dimensional vector, where N equals the number of scalp electrodes)
by means of a Mixture of Gaussians (GMM) and then exploiting this
model for defining typical voltage configurations appearing in each
experimental condition/population (i.e. ‘template maps’ correspond-
ing to the mean of each of the Gaussians in the mixture). Based on
the statistical model it is also possible to assign posterior probabilities
utilization of EEG as a brain imaging tool, NeuroImage (2012),
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Fig. 4. Example of the application of EEG spatial analyses and source imaging to the question of auditory processing pathways. (A) Exemplar voltage auditory evoked potential
(AEP) waveform at a fronto-central midline scalp site. (B) The number of electrodes from among the 128-channel montage exhibiting a significant modulation between experimen-
tal conditions. Statistical analyses entailed paired t-tests at each electrode as a function of time. An effect was considered reliable in time if it persisted for at least 20 consecutive
milliseconds. (C) Mean global field power waveforms were analyzed but failed to provide evidence for significant modulations in response strength. (D) Global dissimilarity be-
tween conditions was statistically tested via a permutation test (detailed in Murray et al., 2008). Significant topographic differences were observed over the ~100–160 ms period.
(E) The results of a topographic cluster analysis identified one map predominating the group-averaged AEPs from each condition. These template maps were then compared based
on spatial correlation with each time sample of the single-subject AEPs to yield a metric of the amount of time over the 100–160 ms period that each template accounted for each
condition (significant interaction between condition and template map; F(1,11)=6.85; pb0.03). (F) The time period identified from the cluster analysis in turn guided the time pe-
riod submitted to source estimations. Statistical differences identified regions with stronger activity in response to the “where” than “what” condition.
Adapted from De Santis et al. (2007).
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to each of these voltage topographies, time-frame by time-frame and
for each trial in each dataset. The mean posterior probabilities can be
compared statistically across conditions/populations in order to eval-
uate in a data-driven manner the time-window where conditions/
populations are the most discriminative. This time period (and the
corresponding template maps) can be used for classifying new test
data at the single-trial level and also for testing whether the identified
time-period is actually informative of the difference between experi-
mental conditions/populations. Importantly, the classifier will in gen-
eral determine more than one consecutive time-periods that are best
discriminative. It is of course of interest to test the relevance of each
of these latencies and the corresponding EEG activity in decoding.
This test can help in clarifying their functional significance and in re-
lation to the behavioral output, treatment efficacy, etc. This method
has already been successfully applied to reliably classify single-trial
responses in situations ranging from visual retinotopy (Tzovara et
al., 2011), where the anatomo-functional organization of visual cor-
tex would a priori result in distinct ERP topographies, to more subtle
experimental settings such as perceptual decision-making with envi-
ronmental sounds (Murray and Spierer, 2009), and prediction of sub-
jective perceptions (Bernasconi et al., 2011). Similar methods based
on a Hidden Markov Model have been applied to the classification
of intracranial EEG in humans performing a sequence learning task
and importantly take into account the distributed pattern of neural
activity so as to identify those regions contributing most to classifica-
tion accuracy (De Lucia et al., 2011). Such methods, and others like it
(e.g. Blankertz et al.; De Martino et al., 2010; Schaefer et al., 2010), are
likely harbingers of the continued development of signal analysis
methods for ERPs.

Clinical applications of spatial EEG analysis

The spatial analysis methods of multichannel EEG described in this
review have been applied to a wide range of clinical populations, and
we review only a selected sampling here.

Spatial EEG analysis in epilepsy

The most obvious and thus most intensively studied applica-
tion of spatial EEG analysis is in epilepsy, where the EEG still is
the method of choice to determine the epileptic syndrome. An in-
creasing number of studies demonstrated that EEG source imag-
ing is a powerful tool to non-invasively localize the epileptic
focus. The obvious major advantage of the EEG in epileptic focus
localization compared to other methods such as fMRI or PET is
the high temporal resolution that allows for separating initiation
from rapid propagation of the epileptic activity. Sperli et al.
(2006) analyzed the standard clinical EEG of 30 operated and
seizure-free children with EEG source imaging. They reported cor-
rect localization on a lobar level in 90% of the cases. Using high-
density electrode montages (128 electrodes), Michel et al.
(2004a) showed 79% localization precision on a sublobar level.
Brodbeck et al. (2010) analyzed 10 operated patients with normal
MRI and showed correct localization within the resected margins
in 8 of them. Zumsteg et al. (2005) performed EEG source imaging
analysis in 15 mesial temporal lobe epilepsy patients and com-
pared them with simultaneously recorded data from foramen
ovale electrodes. They showed that 14 of the 19 different local
field patterns seen by the foramen ovale electrodes could be cor-
rectly identified with EEG source imaging. These results indicate
that even mesial temporal sources can be recorded by scalp EEG
and properly localized by ESI; a result that has also been demon-
strated by Lantz et al. (2001) in simultaneous EEG and intracrani-
al EEG recordings. EEG source localization does not seem to be
affected by brain lesions that potentially change conductivity
values: Brodbeck et al. (2009) correctly localized spike activity
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within the resected zone in 12 of 14 patients, despite large cere-
bral lesions. Given these promising studies, Plummer et al.
(2008) concluded in their comprehensive review that EEG source
imaging deserves a place in the routine work-up of patients with
localization-related epilepsy, but that a prospective validation
study conducted on larger clinical groups is still required. A re-
cent prospective study on 152 operated patients filled this gap
(Brodbeck et al., 2011). They showed that EEG source imaging
has a sensitivity of 84% and a specificity of 88% if the EEG was
recorded with a large number of electrodes (128–256 channels)
and the individual MRI was used as head model. These values were
comparable to those of structural MRI, PET and ictal/interictal
SPECT. The sensitivity and specificity of EEG source imaging de-
creased significantly with use of a low number of electrodes (b32
channels) and a template head model. This large prospective study
allowed the conclusion that EEG source imaging should be used as
a standard tool in presurgical epilepsy evaluation, given its low
cost and high flexibility compared to other imaging methods.

EEG source imaging has also been proven to be useful in epileptic
focus localization in combination with fMRI. In a series of studies, the
spike-related analysis has been informed by the EEG source imaging
of the spikes recorded in the scanner. These studies revealed that
the temporal resolution of EEG source imaging helps to identify
those spike-related BOLD responses that correspond to the initiation
of the epileptic discharge (Fig. 5) (Vulliemoz et al., 2009; Vulliemoz
et al., 2010a, 2010b; Groening et al., 2009; Siniatchkin et al., 2010).
The topographic analysis also helps to analyze fMRI data of epileptic
patients that had no spike in the scanner or no spike-related BOLD re-
sponses (Grouiller et al., 2011); this study used the average spike-
map of the EEG recorded during the long-term monitoring outside
the scanner, fitted this map to the EEG recorded in the scanner in
terms of spatial correlation (see above) and convolved this correla-
tion time-course with the BOLD response. Using this approach, 78%
of the otherwise inconclusive fMRI studies could nonetheless be
interpreted.

Spatial EEG analysis of psychiatric and neurological disorders

Concerning the ongoing spontaneous EEG, spatial analysis in the
time- as well as in the frequency-domains has been used to character-
ize different pathological states, particularly related to psychiatric
disorders. Frequency-domain source localization allows identifying
brain regions that show altered rhythms in patients with psychiatric
disorders (Saletu et al., 2005). EEG microstate analysis showed that
the spatial characteristics of the microstates are a sensitive measure
for different mental diseases. For example, schizophrenic patients
have a reduced number, a decreased duration, and an altered syntax
of some microstate classes (Kinoshita et al., 1995; Koenig et al.,
1999; Lehmann et al., 2005; Strelets et al., 2003), that reversed with
medication (Kikuchi et al., 2007). Shortening of specific EEG micro-
states is observed during auditory verbal hallucinations (Kindler et
al., 2011). Microstate duration was also decreased in depression and
some microstates were repeated more frequently (Strik et al.,
1995). Patients with Alzheimer's disease also showed
decreased duration and an increased number of microstates (Dierks
et al., 1997; Strik et al., 1997). Antipsychotic and anxiolytic drugs as
well as meditation and hypnosis can also alter microstate characteris-
tics (Katayama et al., 2007; Kinoshita et al., 1994).

In addition to spontaneous EEG, spatial analyses have been ap-
plied to ERPs recorded from clinical populations. In the case of pa-
tients with schizophrenia, convergent results are supporting there
being low-level sensory processing deficits (Foxe et al., 2005;
Knebel et al., 2011) that may provide biomarkers of disease state or
endophenotypes, as well as metrics of neuropharmacological treat-
ment efficacy that emerge prior to changes in clinical evaluation
(Lavoie et al., 2008). In the case of patients with multiple sclerosis,
utilization of EEG as a brain imaging tool, NeuroImage (2012),
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Fig. 5. (A) Combined EEG source imaging and fMRI for the localization of epileptic discharges. Top: averaged spike recorded from 32-channel EEG inside the scanner. Global Field
Power and Dissimilarity curves are plotted in blue. (B) Source localization with a linear distributed inverse solution in the patient's MRI at two different time points of GFP peaks.
Maximal activity is seen in the lateral temporal lobe at the first time point and in the mesial temporal lobe at the second time point. (C) Spike-related fMRI reveals negative BOLD
correlates in the lateral temporal lobe, and positive BOLD correlates in the mesial temporal lobe. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Adapted from Vulliemoz et al. (2009).
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spatial analyses of ERPs have been directly compared in their sensitiv-
ity and specificity to values obtained from canonical analyses of indi-
vidual ERP waveforms (Lascano et al., 2009). It was shown that spatial
analyses, particularly in the case of visual evoked potentials, outper-
formed canonical analyses. Spatial analyses have likewise been ap-
plied to study patients with amnesia and provide evidence for
wholly different mechanisms of memory formation and retrieval, de-
spite intact early stages of visual processing (Barcellona-Lehmann et
al., 2010). Similar studies have been successfully conducted in pa-
tients with aphasia (Laganaro et al., 2011) Finally, spatial analyses
of ERPs have been applied to characterize brain function difficulties
in children with ADHD (McLoughlin et al., 2009; Valko et al., 2010),
to predict reading skills in children (Bach et al., 2011), and to evaluate
treatment efficacy and predict changes in use of grammar in children
with specific language impairment (Yoder et al., 2012). It is important
to emphasize the particular usefulness of EEG in this pediatric patient
population, where other functional imaging methods are rather diffi-
cult or impossible to use.
Please cite this article as: Michel, C.M., Murray, M.M., Towards the
doi:10.1016/j.neuroimage.2011.12.039
Conclusions and outlook

The aim of this review was to illustrate the paradigm change that
took place with respect to the EEG analysis in the last decade or so.
EEG analysis moved away from the traditional analysis of grapho-
elements at certain electrodes to a comprehensive analysis of the brain's
electric field at the scalp. This movement was certainly largely inspired
byMEGwork,which from the onset rather analyzed the spatial than the
temporal patterns.We tried to showhere that spatial EEG analysis is not
solely synonymous with source localization. Many different studies
revealed new insights in brain functioning by just analyzing the spatial
changes of the scalp potential map over time or between conditions/
populations. The added value of such spatial analysis is obvious in
view of the fact that analysis of EEG waveforms, be it in terms of fre-
quency of the spontaneous activity or amplitude of the evoked
responses, is ambiguous. Volume conductance and reference-
dependency make it impossible to reliably draw conclusions about the
robustness of statistical effects, the neurophysiologic bases of observed
utilization of EEG as a brain imaging tool, NeuroImage (2012),

http://dx.doi.org/10.1016/j.neuroimage.2011.12.039


12 C.M. Michel, M.M. Murray / NeuroImage xxx (2012) xxx–xxx
differences, or the sources in the brain that generated the signals at a
given electrode. Spatial analyses of the EEG are unambiguous and
allow determining the sources of the scalp signals. Given the high tem-
poral resolution, the flexibility, the cost-effectiveness and the ease-of-
use of EEG and the fact that high-density EEG recordings can now be
performed very quickly, makes EEG mapping a powerful brain imaging
device. We are convinced that EEG is not only a brain imaging tool for
the poor, but that it actually is the ultimate brain imaging tool for
those who are interested in the temporal dynamics of large-scale
brain networks in real-life situations. EEG is currently experiencing a re-
naissance, particularly because it can easily be combinedwith other im-
aging techniques. However, more analysis tools and more engineering
are still needed and deserve to be invested in this technique.

Acknowledgments

The authors receive support from the Swiss National Science
Foundation (grants 310030-132952 and 33CM30-124089 to CMM,
grants 310030B-133136, K-33K1_122518, and 320030_120579 to
MMM as well as the NCCR SYNAPSY grant to CMM and MMM).

References

Ahlfors, S.P., Han, J., Belliveau, J.W., Hamalainen, M.S., 2010. Sensitivity of MEG and EEG
to source orientation. Brain Topogr. 23, 227–232.

Ahveninen, J., Jaaskelainen, I.P., Raij, T., Bonmassar, G., Devore, S., Hamalainen, M.,
Levanen, S., Lin, F.H., Sams, M., Shinn-Cunningham, B.G., Witzel, T., Belliveau,
J.W., 2006. Task-modulated “what” and “where” pathways in human auditory cor-
tex. Proc. Natl. Acad. Sci. U.S.A. 103, 14608–14613.

Alain, C., Arnott, S.R., Hevenor, S., Graham, S., Grady, C.L., 2001. “What” and “where” in
the human auditory system. Proc. Natl. Acad. Sci. U.S.A. 98, 12301–12306.

Anourova, I., Nikouline, V.V., Ilmoniemi, R.J., Hotta, J., Aronen, H.J., Carlson, S., 2001. Ev-
idence for dissociation of spatial and nonspatial auditory information processing.
Neuroimage 14, 1268–1277.

Astolfi, L., Cincotti, F., Babiloni, C., Carducci, F., Basilisco, A., Rossini, P.M., Salinari, S., Mattia, D.,
Cerutti, S., Dayan, D.B., Ding, L., Ni, Y., He, B., Babiloni, F., 2005. Estimation of the cortical
connectivity by high-resolution EEG and structural equation modeling: simulations and
application to finger tapping data. IEEE Trans. Biomed. Eng. 52, 757–768.

Astolfi, L., Cincotti, F., Mattia, D., Marciani, M.G., Baccala, L.A., de Vico Fallani, F., Salinari,
S., Ursino, M., Zavaglia, M., Ding, L., Edgar, J.C., Miller, G.A., He, B., Babiloni, F., 2007.
Comparison of different cortical connectivity estimators for high-resolution EEG
recordings. Hum. Brain Mapp. 28, 143–157.

Astolfi, L., Toppi, J., De Vico Fallani, F., Vecchiato, G., Salinari, S., Mattia, D., Cincotti, F.,
Babiloni, F., 2010. Neuroelectrical hyperscanning measures simultaneous brain ac-
tivity in humans. Brain Topogr. 23, 243–256.

Baars, B.J., 2002a. The conscious access hypothesis: origins and recent evidence. Trends
Cogn. Sci. 6, 47–52.

Baars, J.B., 2002b. Atoms of thought. Science and Consciousness Review December, 1–2.
Bach, S., Richardson, U., Brandeis, D., Martin, E., Brem, S., 2011. Print-specific multi-

modal brain activation in kindergarten improves prediction of reading skills in sec-
ond grade. Neuroimage.

Baillet, S., Mosher, J.C., Leahy, R.M., 2001. Electromagnetic brain mapping. IEEE Signal
Process. Mag. 14–30.

Barcellona-Lehmann, S., Morand, S., Bindschaedler, C., Nahum, L., Gabriel, D., Schnider,
A., 2010. Abnormal cortical network activation in human amnesia: a high-
resolution evoked potential study. Brain Topogr. 23, 72–81.

Berger, H., 1929. Über das Elektroenkephalogramm des Menschen. Arch. Psychiatr.
Nervenkr. 87, 527–570.

Bernasconi, F., Tzovara, A., Manuel, A., Murray, M., DeLucia, M., Spierer, L., 2011. Noise
in brain activity engenders perception and influences discrimination sensitivity.
Journal of Neuroscience 31, 17971–17981.

Bianchi, L., Sami, S., Hillebrand, A., Fawcett, I.P., Quitadamo, L.R., Seri, S., 2010. Which
Physiological Components are More Suitable for Visual ERP Based Brain-Computer
Interface? A Preliminary MEG/EEG Study. Brain Topogr 23, 180–185.

Biswal, B.B., Mennes, M., Zuo, X.N., Gohel, S., Kelly, C., Smith, S.M., Beckmann, C.F.,
Adelstein, J.S., Buckner, R.L., Colcombe, S., Dogonowski, A.M., Ernst, M., Fair,
D., Hampson, M., Hoptman, M.J., Hyde, J.S., Kiviniemi, V.J., Kotter, R., Li, S.J., Lin, C.P.,
Lowe, M.J., Mackay, C., Madden, D.J., Madsen, K.H., Margulies, D.S., Mayberg, H.S.,
McMahon, K., Monk, C.S., Mostofsky, S.H., Nagel, B.J., Pekar, J.J., Peltier, S.J., Petersen,
S.E., Riedl, V., Rombouts, S.A., Rypma, B., Schlaggar, B.L., Schmidt, S., Seidler, R.D.,
Siegle, G.J., Sorg, C., Teng, G.J., Veijola, J., Villringer, A., Walter, M., Wang, L., Weng,
X.C., Whitfield-Gabrieli, S., Williamson, P., Windischberger, C., Zang, Y.F., Zhang, H.Y.,
Castellanos, F.X., Milham, M.P., 2010. Toward discovery science of human brain
function. Proc. Natl. Acad. Sci. U.S.A. 107, 4734–4739.

Blankertz, B., Lemm, S., Treder, M., Haufe, S., Muller, K.R., Single-trial analysis and clas-
sification of ERP components—a tutorial. Neuroimage 56, 814–825.

Boly, M., Phillips, C., Tshibanda, L., Vanhaudenhuyse, A., Schabus, M., Dang-Vu, T.T.,
Moonen, G., Hustinx, R., Maquet, P., Laureys, S., 2008. Intrinsic brain activity in
Please cite this article as: Michel, C.M., Murray, M.M., Towards the
doi:10.1016/j.neuroimage.2011.12.039
altered states of consciousness: how conscious is the default mode of brain func-
tion? Ann. N. Y. Acad. Sci. 1129, 119–129.

Boly, M., Garrido, M.I., Gosseries, O., Bruno, M.A., Boveroux, P., Schnakers, C., Massimini,
M., Litvak, V., Laureys, S., Friston, K., 2011. Preserved feedforward but impaired
top-down processes in the vegetative state. Science 332, 858–862.

Brandeis, D., Naylor, H., Halliday, R., Callaway, E., Yano, L., 1992. Scopolamine effects on
visual information processing, attention, and event-related potential map laten-
cies. Psychophysiology 29, 315–336.

Bressler, S.L., 1995. Large-scale cortical networks and cognition. Brain Res. Brain Res.
Rev. 20, 288–304.

Bressler, S.L., Tognoli, E., 2006. Operational principles of neurocognitive networks. Int. J.
Psychophysiol. 60, 139–148.

Britz, J., Van De Ville, D., Michel, C.M., 2010. BOLD correlates of EEG topography reveal
rapid resting-state network dynamics. Neuroimage 52, 1162–1170.

Brodbeck, V., Lascano, A.M., Spinelli, L., Seeck, M., Michel, C.M., 2009. Accuracy of EEG
source imaging of epileptic spikes in patients with large brain lesions. Clin. Neuro-
physiol. 120, 679–685.

Brodbeck, V., Spinelli, L., Lascano, A.M., Wissmeier, M., Vargas, M.I., Vulliemoz, S.,
Pollo, C., Schaller, K., Michel, C.M., Seeck, M., 2011. Electroencephalographic
source imaging: a prospective study of 152 operated epileptic patients.
Brain 134, 2887–2897.

Brodbeck, V., Spinelli, L., Lascano, A.M., Pollo, C., Schaller, K., Vargas, M.I., Wissmeyer,
M., Michel, C.M., Seeck, M., 2010. Electrical source imaging for presurgical focus
localization in epilepsy patients with normal MRI. Epilepsia 51, 583–591.

Brunet, D., Murray, M.M., Michel, C.M., 2011. Spatiotemporal analysis of multichannel
EEG: CARTOOL. Comput. Intell. Neurosci. 2011, 813870.

Bullock, T.H., McClune, M.C., Enright, J.T., 2003. Are the electroencephalograms mainly
rhythmic? Assessment of periodicity in wide-band time series. Neuroscience 121,
233–252.

Buzsaki, G., 2006. Rhythms of the Brain. Oxford University Press, Oxford.
Buzsaki, G., Draguhn, A., 2004. Neuronal oscillations in cortical networks. Science 304,

1926–1929.
Changeux, J.-P., Michel, C.M., 2004. Mechanism of neural integration at the brain-scale

level. In: Grillner, S., Graybiel, A.M. (Eds.), Microcircuits. MIT Press, Cambridge, pp.
347–370.

Damoiseaux, J.S., Rombouts, S.A., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M.,
Beckmann, C.F., 2006. Consistent resting-state networks across healthy subjects.
Proc. Natl. Acad. Sci. U.S.A. 103, 13848–13853.

Davis, P.A., 1939. Effects of acoustic stimuli on the waking human brain. J. Neurophy-
siol. 2, 494–499.

De Lucia, M., Michel, C.M., Clarke, S., Murray, M.M., 2007a. Single subject EEG analysis
based on topographic information. Int. J. Bioelectromag. 9, 168–171.

De Lucia, M., Michel, C.M., Clarke, S., Murray, M.M., 2007b. Single-Trial Topographic
Analysis of Human EEG: A New ‘Image’ of Event-Related Potentials. Proceedings
Information Technology Applications in Biomedicine.

De Lucia, M., Michel, C.M., Murray, M.M., 2010. Comparing ICA-based and single-trial
topographic ERP analyses. Brain Topogr. 23, 119–127.

De Lucia, M., Constantinescu, I., Sterpenich, V., Pourtois, G., Seeck, M., Schwartz, S.,
2011. Decoding sequence learning from single-trial intracranial EEG in humans.
PLoS One, 6, e28630.

De Martino, F., de Borst, A.W., Valente, G., Goebel, R., Formisano, E., 2010. Predicting
EEG single trial responses with simultaneous fMRI and relevance vector machine
regression. Neuroimage 56, 826–836.

De Santis, L., Clarke, S., Murray, M.M., 2007. Automatic and intrinsic auditory “what”
and “where” processing in humans revealed by electrical neuroimaging. Cereb.
Cortex 17, 9–17.

Dehaene, S., Changeux, J.P., 2004. Neural mechanisms for access to consciousness, In:
Gazzaniga, M.S. (Ed.), The Cognitive Neurosciences, 3rd ed. MIT Press, Cambridge,
MA, USA, pp. 1145–1157.

Dehaene, S., Naccache, L., 2001. Towards a cognitive neuroscience of consciousness:
basic evidence and a workspace framework. Cognition 79, 1–37.

Dehaene, S., Kerszberg, M., Changeux, J.P., 1998. A neuronal model of a global work-
space in effortful cognitive tasks. Proc. Natl. Acad. Sci. U.S.A. 95, 14529–14534.

Deouell, L.Y., 2007. The frontal generator of the mismatch negativity revisited. J. Psy-
chophysiol. 21, 188–203.

Deouell, L.Y., Bentin, S., Giard, M.H., 1998. Mismatch negativity in dichotic listening: ev-
idence for interhemispheric differences and multiple generators. Psychophysiolo-
gy 35, 355–365.

Dierks, T., Jelic, V., Julin, P., Maurer, K., Wahlund, L.O., Almkvist, O., Strik, W.K., Winblad,
B., 1997. EEG-microstates in mild memory impairment and Alzheimer's disease:
possible association with disturbed information processing. J. Neural Transm. 104,
483–495.

Donders, F., 1868. Over de snelheid van psychische processen. Onderzoekingen gedaan
in het Physiologisch Laboratorium der Utrechtsche Hoogeschoo Tweede reeks,
92–120.

Dumas, G., Nadel, J., Soussignan, R., Martinerie, J., Garnero, L., 2010. Inter-brain syn-
chronization during social interaction. PLoS One 5, e12166.

Efron, R., 1970. The minimum duration of a perception. Neuropsychologia 8, 57–63.
Fein, G., Raz, J., Brown, F.F., Merrin, E.L., 1988. Common reference coherence data are

confounded by power and phase effects. Electroencephalogr. Clin. Neurophysiol.
69, 581–584.

Fox, M.D., Raichle, M.E., 2007. Spontaneous fluctuations in brain activity observed with
functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711.

Foxe, J.J., Murray, M.M., Javitt, D.C., 2005. Filling-in in schizophrenia: a high-density
electrical mapping and source-analysis investigation of illusory contour proces-
sing. Cereb. Cortex 15, 1914–1927.
utilization of EEG as a brain imaging tool, NeuroImage (2012),

http://dx.doi.org/10.1016/j.neuroimage.2011.12.039


13C.M. Michel, M.M. Murray / NeuroImage xxx (2012) xxx–xxx
Frei, E., Gamma, A., Pascual-Marqui, R., Lehmann, D., Hell, D., Vollenweider, F.X., 2001.
Localization of MDMA-induced brain activity in healthy volunteers using low resolu-
tion brain electromagnetic tomography (LORETA). Hum. Brain Mapp. 14, 152–165.

Garrido, M.I., Friston, K.J., Kiebel, S.J., Stephan, K.E., Baldeweg, T., Kilner, J.M., 2008. The
functional anatomy of the MMN: a DCM study of the roving paradigm. Neuroimage
42, 936–944.

Gencer, N.G., Williamson, S.J., Gueziec, A., Hummel, R., 1996. Optimal reference elec-
trode selection for electric source imaging. Electroencephalogr. Clin. Neurophysiol.
99, 163–173.

Geselowitz, D.B., 1998. The zero of potential. IEEE Eng. Med. Biol. Mag. 17, 128–132.
Giard, M.H., Perrin, F., Pernier, J., Bouchet, P., 1990. Brain generators implicated in the

processing of auditory stimulus deviance: a topographic event-related potential
study. Psychophysiology 27, 627–640.

Giard, M.H., Perrin, F., Pernier, J., 1991. Scalp topographies dissociate attentional ERP
components during auditory information processing. Acta Otolaryngol Suppl 491,
168–174; discussion 175.

Granger, C.W.J., 1969. Investigating causal relations by econometric models and cross-
spectral methods. Econometrica 37, 424–438.

Groening, K., Brodbeck, V., Moeller, F., Wolff, S., van Baalen, A., Michel, C.M., Jansen, O.,
Boor, R., Wiegand, G., Stephani, U., 2009. Combination of EEG-fMRI and EEG source
analysis improves interpretation of spike-associated activation networks in paedi-
atric pharmacoresistent focal epilepsies. Neuroimage 46, 827–833.

Grouiller, F., Thornton, R.C., Groening, K., Spinelli, L., Duncan, J.S., Schaller, K., Siniatchkin,
M., Lemieux, L., Seeck, M., Michel, C.M., Vulliemoz, S., 2011. With or without spikes:
localization of focal epileptic activity by simultaneous electroencephalography and
functional magnetic resonance imaging. Brain 134, 2867–2886.

Guevara, R., Velazquez, J.L., Nenadovic, V., Wennberg, R., Senjanovic, G., Dominguez, L.G.,
2005. Phase synchronization measurements using electroencephalographic record-
ings: what can we really say about neuronal synchrony? Neuroinformatics 3,
301–314.

Hackett, T.A., 2010. Information flow in the auditory cortical network. Hear. Res. 271,
133–146.

Hari, R., 2011. Magnetoencephalography: Methods and Applications. In: Schomer, D.,
Lopes da Silva, F.H. (Eds.), Niedermeyer's Electroencephalography. Lippincott
Williams & Wilkins, Philadelphia, pp. 865–900.

Haynes, J.D., Rees, G., 2006. Decoding mental states from brain activity in humans. Nat.
Rev. Neurosci. 7, 523–534.

He, B., Lian, J., 2005. Electrophysiological neuroimaging: solving the EEG inverse prob-
lem. In: He, B. (Ed.), Neuroal Engineering. Kluwer Academic Publishers, Norwell,
USA, pp. 221–261.

He, B.J., Zempel, J.M., Snyder, A.Z., Raichle, M.E., 2010. The temporal structures and
functional significance of scale-free brain activity. Neuron 66, 353–369.

He, B., Yang, L.,Wilke, C., Yuan, H., 2011. Electrophysiological imaging of brain activity and
connectivity-challenges and opportunities. IEEE Trans Biomed Eng 58, 1918–1931.

Herrmann, C.S., Senkowski, D., Maess, B., Friederici, A.D., 2002. Spatial versus object
feature processing in human auditory cortex: a magnetoencephalographic study.
Neurosci. Lett. 334, 37–40.

Hu, S., Stead, M., Dai, Q., Worrell, G.A., 2010. On the recording reference contribution to
EEG correlation, phase synchrony, and coherence. IEEE Trans. Syst. Man Cybern. B
Cybern. 40, 1294–1304.

John, E.R., Prichep, L.S., 2006. The relevance of QEEG to the evaluation of behavioral dis-
orders and pharmacological interventions. Clin. EEG Neurosci. 37, 135–143.

Kaminski, M.J., Blinowska, K.J., 1991. A new method of the description of the informa-
tion flow in the brain structures. Biol. Cybern. 65, 203–210.

Katayama, H., Gianotti, L.R., Isotani, T., Faber, P.L., Sasada, K., Kinoshita, T., Lehmann, D.,
2007. Classes of multichannel EEG microstates in light and deep hypnotic condi-
tions. Brain Topogr. 20, 7–14.

Kiebel, S.J., Garrido, M.I., Moran, R., Chen, C.C., Friston, K.J., 2009. Dynamic causal
modeling for EEG and MEG. Hum. Brain Mapp. 30, 1866–1876.

Kikuchi, M., Koenig, T., Wada, Y., Higashima, M., Koshino, Y., Strik, W., Dierks, T., 2007.
Native EEG and treatment effects in neuroleptic-naive schizophrenic patients: time
and frequency domain approaches. Schizophr. Res. 97, 163–172.

Kindler, J., Hubl, D., Strik, W.K., Dierks, T., Koenig, T., 2011. Resting-state EEG in schizo-
phrenia: auditory verbal hallucinations are related to shortening of specific micro-
states. Clin. Neurophysiol. 122, 1179–1182.

Kinoshita, T., Michel, C.M., Yagyu, T., Lehmann, D., Saito, M., 1994. Diazepam and sulpir-
ide effects on frequency domain EEG source localisations. Neuropsychobiology 30,
126–131.

Kinoshita, T., Strik, W.K., Michel, C.M., Yagyu, T., Saito, M., Lehmann, D., 1995. Micro-
state segmentation of spontaneous multichannel EEG map series under diazepam
and sulpiride. Pharmacopsychiatry 28, 51–55.

Knebel, J.F., Javitt, D.C., Murray, M.M., 2011. Impaired early visual response modula-
tions to spatial information in chronic schizophrenia. Psychiatry Res. 193, 168–176.

Knuth, K.H., Shah, A.S., Truccolo, W.A., Ding, M., Bressler, S.L., Schroeder, C.E., 2006. Dif-
ferentially variable component analysis: identifying multiple evoked components
using trial-to-trial variability. J. Neurophysiol. 95, 3257–3276.

Koenig, T., Melie-Garcia, L., 2010. A method to determine the presence of averaged
event-related fields using randomization tests. Brain Topogr. 23, 233–242.

Koenig, T., Pascual-Marqui, R.D., 2009. Multichannel frequency and time-frequency anal-
ysis. In: Michel, C.M., Koenig, T., Brandeis, D., Gianotti, L.R.R., Wackermann, J. (Eds.),
Electrical Neuroimaging. Cambridge University Press, Cambridge, pp. 145–168.

Koenig, T., Lehmann, D., Merlo, M.C., Kochi, K., Hell, D., Koukkou, M., 1999. A deviant
EEG brain microstate in acute, neuroleptic-naive schizophrenics at rest. Eur.
Arch. Psychiatry Clin. Neurosci. 249, 205–211.

Koenig, T., Lehmann, D., Saito, N., Kuginuki, T., Kinoshita, T., Koukkou, M., 2001a. De-
creased functional connectivity of EEG theta-frequency activity in first-episode,
Please cite this article as: Michel, C.M., Murray, M.M., Towards the
doi:10.1016/j.neuroimage.2011.12.039
neuroleptic-naive patients with schizophrenia: preliminary results. Schizophr.
Res. 50, 55–60.

Koenig, T., Marti-Lopez, F., Valdes-Sosa, P., 2001b. Topographic time-frequency decom-
position of the EEG. Neuroimage 14, 383–390.

Koenig, T., Prichep, L., Lehmann, D., Sosa, P.V., Braeker, E., Kleinlogel, H., Isenhart, R.,
John, E.R., 2002. Millisecond by millisecond, year by year: normative EEG micro-
states and developmental stages. Neuroimage 16, 41–48.

Koenig, T., Prichep, L., Dierks, T., Hubl, D., Wahlund, L.O., John, E.R., Jelic, V., 2005a. De-
creased EEG synchronization in Alzheimer's disease and mild cognitive impair-
ment. Neurobiol. Aging 26, 165–171.

Koenig, T., Studer, D., Hubl, D., Melie, L., Strik, W.K., 2005b. Brain connectivity at dif-
ferent time-scales measured with EEG. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360,
1015–1023.

Koenig, T., Kottlow, M., Stein, M., Melie-Garcia, L., 2011. Ragu: a free tool for the anal-
ysis of EEG and MEG event-related scalp field data using global randomization sta-
tistics. Comput. Intell. Neurosci. 2011, 938925.

Laganaro, M., Morand, S., Michel, C.M., Spinelli, L., Schnider, A., 2011. ERP correlates of
word production before and after stroke in an aphasic patient. J. Cogn. Neurosci.
23, 374–381.

Lantz, G., de Peralta, Grave, Menendez, R., Gonzalez Andino, S., Michel, C.M., 2001. Non-
invasive localization of electromagnetic epileptic activity. II. Demonstration of sub-
lobar accuracy in patients with simultaneous surface and depth recordings. Brain
Topogr. 14, 139–147.

Lascano, A.M., Brodbeck, V., Lalive, P.H., Chofflon, M., Seeck, M., Michel, C.M., 2009. In-
creasing the diagnostic value of evoked potentials in multiple sclerosis by quanti-
tative topographic analysis of multichannel recordings. J. Clin. Neurophysiol. 26,
316–325.

Lascano, A.M., Hummel, T., Lacroix, J.S., Landis, B.N., Michel, C.M., 2010. Spatio-tempo-
ral dynamics of olfactory processing in the human brain: an event-related source
imaging study. Neuroscience 167, 700–708.

Lavoie, S., Murray, M.M., Deppen, P., Knyazeva, M.G., Berk, M., Boulat, O., Bovet, P., Bush,
A.I., Conus, P., Copolov, D., Fornari, E.,Meuli, R., Solida, A., Vianin, P., Cuenod,M., Buclin,
T., Do, K.Q., 2008. Glutathione precursor, N-acetyl-cysteine, improves mismatch neg-
ativity in schizophrenia patients. Neuropsychopharmacology 33, 2187–2199.

Leavitt, V.M., Molholm, S., Gomez-Ramirez, M., Foxe, J.J., 2011. “What” and “where” in
auditory sensory processing: a high-density electrical mapping study of distinct
neural processes underlying sound object recognition and sound localization.
Front Integr Neurosci 5, 23.

Lehmann, D., 1971. Multichannel topography of human alpha EEG fields. Electroence-
phalogr. Clin. Neurophysiol. 31, 439–449.

Lehmann, D., 1987. Principles of spatial analysis. In: Gevins, A.S., Remont, A. (Eds.),
Methods of Analysis of Brain Electrical and Magnetic Signals. Elsevier, Amsterdam,
pp. 309–354.

Lehmann, D., Michel, C.M., 1990. Intracerebral dipole source localization for FFT power
maps. Electroencephalogr. Clin. Neurophysiol. 76, 271–276.

Lehmann, D., Skrandies, W., 1980. Reference-free identification of components of
checkerboard-evoked multichannel potential fields. Electroencephalogr. Clin. Neu-
rophysiol. 48, 609–621.

Lehmann, D., Ozaki, H., Pal, I., 1986. Averaging of spectral power and phase via vector
diagram best fits without reference electrode or reference channel. Electroence-
phalogr. Clin. Neurophysiol. 64, 350–363.

Lehmann, D., Ozaki, H., Pal, I., 1987. EEG alpha map series: brain micro-states by space-
oriented adaptive segmentation. Electroencephalogr. Clin. Neurophysiol. 67, 271–288.

Lehmann, D., Strik, W.K., Henggeler, B., Koenig, T., Koukkou, M., 1998. Brain electric mi-
crostates and momentary conscious mind states as building blocks of spontaneous
thinking: I. Visual imagery and abstract thoughts. Int. J. Psychophysiol. 29, 1–11.

Lehmann, D., Faber, P.L., Galderisi, S., Herrmann, W.M., Kinoshita, T., Koukkou, M.,
Mucci, A., Pascual-Marqui, R.D., Saito, N., Wackermann, J., Winterer, G., Koenig, T.,
2005. EEG microstate duration and syntax in acute, medication-naive, first-
episode schizophrenia: a multi-center study. Psychiatry Res. 138, 141–156.

Lehmann, D., Pascual-Marqui, R., Michel, C.M., 2009. EEGmicrostates. Scholarpedia 4, 7632.
Lindenberger, U., Li, S.C., Gruber, W., Muller, V., 2009. Brains swinging in concert: cor-

tical phase synchronization while playing guitar. BMC Neurosci. 10, 22.
Luck, S.J., 2005. An Introduction to the Event-Related Potential Technique. MIT Press,

Cambridge.
Maeder, P.P., Meuli, R.A., Adriani, M., Bellmann, A., Fornari, E., Thiran, J.P., Pittet, A.,

Clarke, S., 2001. Distinct pathways involved in sound recognition and localization:
a human fMRI study. Neuroimage 14, 802–816.

Makeig, S., 2002. Response: event-related brain dynamics — unifying brain electro-
physiology. Trends Neurosci. 25, 390.

Makeig, S., Jung, T.P., Bell, A.J., Ghahremani, D., Sejnowski, T.J., 1997. Blind separation of
auditory event-related brain responses into independent components. Proc. Natl.
Acad. Sci. U.S.A. 94, 10979–10984.

Malmivuo, J., 2012. Comparison of the Properties of EEG and MEG in Detecting the
Electric Activity of the Brain. Brain Topogr. 25, 1–19.

Mantini, D., Corbetta, M., Perrucci, M.G., Romani, G.L., Del Gratta, C., 2009. Large-scale
brain networks account for sustained and transient activity during target detec-
tion. Neuroimage 44, 265–274.

Marco-Pallares, J., Grau, C., Ruffini, G., 2005. Combined ICA-LORETA analysis of mis-
match negativity. Neuroimage 25, 471–477.

McLoughlin, G., Albrecht, B., Banaschewski, T., Rothenberger, A., Brandeis, D., Asherson,
P., Kuntsi, J., 2009. Performance monitoring is altered in adult ADHD: a familial
event-related potential investigation. Neuropsychologia 47, 3134–3142.

Michel, C., Brandeis, D., 2010. The sources and temporal dynamics of scalp electric
fields. In: Ullsperger, M., Debener, S. (Eds.), Simultaneous EEG and fMRI. Oxford
University Press, Oxford, pp. 3–19.
utilization of EEG as a brain imaging tool, NeuroImage (2012),

http://dx.doi.org/10.1016/j.neuroimage.2011.12.039


14 C.M. Michel, M.M. Murray / NeuroImage xxx (2012) xxx–xxx
Michel, C., He, B., 2011. EEG Mapping and source imaging. In: Schomer, D., Lopes da
Silva, F.H. (Eds.), Niedermeyer's Electroencephalography. Lippincott Williams &
Wilkins, Philadelphia, pp. 1179–1202.

Michel, C.M., Lantz, G., Spinelli, L., De Peralta, R.G., Landis, T., Seeck, M., 2004a. 128-
channel EEG source imaging in epilepsy: clinical yield and localization precision.
J. Clin. Neurophysiol. 21, 71–83.

Michel, C.M., Murray, M.M., Lantz, G., Gonzalez, S., Spinelli, L., Grave de Peralta, R.,
2004b. EEG source imaging. Clin. Neurophysiol. 115, 2195–2222.

Michel, C.M., Koenig, T., Brandeis, D., Gianotti, L.R.R., Wackermann, J. (Eds.), 2009. Elec-
trical Neuroimaging. Cambridge University Press, Cambridge.

Mishkin, M., Ungerleider, L.G., Macko, K.A., 1983. Object vision and spatial vision: two
cortical pathways. Trends Neurosci 6, 414.417.

Murray, M.M., Spierer, L., 2009. Auditory spatio-temporal brain dynamics and their
consequences for multisensory interactions in humans. Hear. Res. 258, 121–133.

Murray, M.M., Brunet, D., Michel, C.M., 2008. Topographic ERP analyses: a step-by-step
tutorial review. Brain Topogr. 20, 249–264.

Murray, M.M., De Lucia, M., Brunet, D., Michel, C.M., 2009. Principles of topographic an-
alyses for electrical neuroimaging. In: Handy, T.C. (Ed.), Brain Signal Analysis. The
MIT Press, Cambridge, MA, pp. 21–54.

Naatanen, R., Michie, P.T., 1979. Early selective-attention effects on the evoked poten-
tial: a critical review and reinterpretation. Biol. Psychol. 8, 81–136.

Naatanen, R., Gaillard, A.W., Mantysalo, S., 1978. Early selective-attention effect on
evoked potential reinterpreted. Acta Psychol. (Amst) 42, 313–329.

Naatanen, R., Paavilainen, P., Rinne, T., Alho, K., 2007. The mismatch negativity (MMN)
in basic research of central auditory processing: a review. Clin. Neurophysiol. 118,
2544–2590.

Novak, G.P., Ritter, W., Vaughan Jr., H.G., Wiznitzer, M.L., 1990. Differentiation of nega-
tive event-related potentials in an auditory discrimination task. Electroencepha-
logr. Clin. Neurophysiol. 75, 255–275.

Pascual-Marqui, R.D., Michel, C.M., Lehmann, D., 1995. Segmentation of brain electrical
activity into microstates: model estimation and validation. IEEE Trans. Biomed.
Eng. 42, 658–665.

Pascual-Marqui, R.D., Sekihara, K., Brandeis, D., Michel, C.M., 2009. Imaging the electri-
cal neuronal generators of EEG/MEG. In: Michel, C.M., Koenig, T., Brandeis, D., Gia-
notti, L.R.R., Wackermann, J. (Eds.), Electrical Neuroimaging. Cambridge University
Press, Cambridge.

Plummer, C., Harvey, A.S., Cook, M., 2008. EEG source localization in focal epilepsy:
where are we now? Epilepsia 49, 201–218.

Pourtois, G., Deplanque, S., C.M., M., P., V., 2008. Beyond the conventional event-related
brain potential (ERP): exploring the time-course of visual emotion processing
using topographic and principal component analyses. Brain Topography 20,
265–277.

Rauschecker, J.P., Scott, S.K., 2009. Maps and streams in the auditory cortex: nonhuman
primates illuminate human speech processing. Nat. Neurosci. 12, 718–724.

Rinne, T., Alho, K., Ilmoniemi, R.J., Virtanen, J., Naatanen, R., 2000. Separate time behav-
iors of the temporal and frontal mismatch negativity sources. Neuroimage 12,
14–19.

Rivet, B., Cecotti, H., Maby, E., Mattout, J., 2011. Impact of Spatial Filters During Sensor
Selection in a Visual P300 Brain-Computer Interface. Brain Topogr.

Ryynanen, O.R., Hyttinen, J.A., Malmivuo, J.A., 2006. Effect of measurement noise and
electrode density on the spatial resolution of cortical potential distribution with
different resistivity values for the skull. IEEE Trans Biomed Eng 53, 1851–1858.

Saletu, B., Anderer, P., Saletu-Zyhlarz, G.M., Pascual-Marqui, R.D., 2005. EEG mapping
and low-resolution brain electromagnetic tomography (LORETA) in diagnosis
and therapy of psychiatric disorders: evidence for a key-lock principle. Clin. EEG
Neurosci. 36, 108–115.

Salmelin, R., Baillet, S., 2009. Electromagnetic brain imaging. Hum. Brain Mapp. 30,
1753–1757.

Sannelli, C., Dickhaus, T., Halder, S., Hammer, E.M., Muller, K.R., Blankertz, B., 2010. On
Optimal Channel Configurations for SMR-based Brain-Computer Interfaces. Brain
Topogr 23(2), (this issue).

Schaefer, R.S., Farquhar, J., Blokland, Y., Sadakata, M., Desain, P., 2010. Name that tune:
decoding music from the listening brain. Neuroimage 56, 843–849.

Scherg, M., 1990. Fundamentals of dipole source potential analysis. In: Grandori, F.,
Hoke, M., Romani, G.L. (Eds.), Auditory Evoked Magnetic Fields and Electric Poten-
tials. Karger, Basel, pp. 40–96.

Schiff, S.J., 2005. Dangerous phase. Neuroinformatics 3, 315–318.
Schonwiesner, M., Novitski, N., Pakarinen, S., Carlson, S., Tervaniemi, M., Naatanen, R.,

2007. Heschl's gyrus, posterior superior temporal gyrus, and mid-ventrolateral
prefrontal cortex have different roles in the detection of acoustic changes. J. Neuro-
physiol. 97, 2075–2082.

Sekihara, K., Nagarajan, S.S., 2004. Neuromagnetic source reconstruction and inverse
modeling. In: He, B. (Ed.), Modeling and Imaging of Bioelectric Activity — Princi-
ples and Applications. Kluwer Academic/Plenum Publishers, New York, pp.
213–250.

Sergent, C., Dehaene, S., 2004. Neural processes underlying conscious perception: ex-
perimental findings and a global neuronal workspace framework. J. Physiol. Paris
98, 374–384.

Shah, A.S., Bressler, S.L., Knuth, K.H., Ding, M., Mehta, A.D., Ulbert, I., Schroeder, C.E.,
2004. Neural dynamics and the fundamental mechanisms of event-related brain
potentials. Cereb. Cortex 14, 476–483.

Singer, W., 1999. Neuronal synchrony: a versatile code for the definition of relations?
Neuron 24 (49–65), 111–125.

Siniatchkin, M., Groening, K., Moehring, J., Moeller, F., Boor, R., Brodbeck, V., Michel,
C.M., Rodionov, R., Lemieux, L., Stephani, U., 2010. Neuronal networks in children
with continuous spikes and waves during slow sleep. Brain 133, 2798–2813.
Please cite this article as: Michel, C.M., Murray, M.M., Towards the
doi:10.1016/j.neuroimage.2011.12.039
Skrandies, W., 1989. Data reduction of multichannel fields: global field power and prin-
cipal component analysis. Brain Topogr. 2, 73–80.

Spencer, K.M., Dien, J., Donchin, E., 2001. Spatiotemporal analysis of the late ERP re-
sponses to deviant stimuli. Psychophysiology 38, 343–358.

Sperli, F., Spinelli, L., Seeck, M., Kurian, M., Michel, C.M., Lantz, G., 2006. EEG source im-
aging in paediatric epilepsy surgery: a new perspective in presurgical workup. Epi-
lepsia 47, 981–990.

Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C., 2004. Organization, development and
function of complex brain networks. Trends Cogn. Sci. 8, 418–425.

Stephan, K.E., Friston, K.J., 2011. Analyzing effective connectivity with fMRI. Wiley
Interdiscip Rev Cogn Sci 1, 446–459.

Strelets, V., Faber, P.L., Golikova, J., Novototsky-Vlasov, V., Koenig, T., Gianotti, L.R.,
Gruzelier, J.H., Lehmann, D., 2003. Chronic schizophrenics with positive symp-
tomatology have shortened EEG microstate durations. Clin. Neurophysiol. 114,
2043–2051.

Strik, W.K., Lehmann, D., 1993. Data determined window size and space-oriented seg-
mentation of spontaneous EEG map series. Electroencephalogr. Clin. Neurophysiol.
87, 169–174.

Strik, W.K., Dierks, T., Becker, T., Lehmann, D., 1995. Larger topographical variance and
decreased duration of brain electric microstates in depression. J. Neural Transm.
Gen. Sect. 99, 213–222.

Strik, W.K., Chiaramonti, R., Muscas, G.C., Paganini, M., Mueller, T.J., Fallgatter, A.J.,
Versari, A., Zappoli, R., 1997. Decreased EEG microstate duration and anteriorisa-
tion of the brain electrical fields in mild and moderate dementia of the Alzheimer
type. Psychiatry Res. 75, 183–191.

Studer, D., Hoffmann, U., Koenig, T., 2006. From EEG dependency multichannel match-
ing pursuit to sparse topographic EEG decomposition. J. Neurosci. Methods 153,
261–275.

Sutton, S., Braren, M., Zubin, J., John, E.R., 1965. Evoked-potential correlates of stimulus
uncertainty. Science 150, 1187–1188.

Thivierge, J.P., Cisek, P., 2008. Nonperiodic synchronization in heterogeneous networks
of spiking neurons. J. Neurosci. 28, 7968–7978.

Tian, B., Reser, D., Durham, A., Kustov, A., Rauschecker, J.P., 2001. Functional specializa-
tion in rhesus monkey auditory cortex. Science 292, 290–293.

Tse, C.Y., Penney, T.B., 2008. On the functional role of temporal and frontal cortex acti-
vation in passive detection of auditory deviance. Neuroimage 41, 1462–1470.

Tucker, D.M., 1993. Spatial sampling of head electrical fields: the geodesic sensor net.
Electroencephalogr. Clin. Neurophysiol. 87, 154–163.

Tzovara, A., Murray, M.M., Plomp, G., Herzog, M.H., Michel, C.M., De Lucia, M., 2011.
Decoding stimulus-related information from single-trial EEG responses based on
voltage topographies. Pattern Recognition. doi:10.1016/j.patcog.2011.04.007.

Tzovara, A., Murray, M.M., Michel, C.M., De Lucia, M., 2012. A tutorial review of electri-
cal neuroimaging from group-average to single-trial event-related potentials. De-
velopmental Neuropsychology, in press.

Valko, L., Schneider, G., Doehnert, M., Muller, U., Brandeis, D., Steinhausen, H.C.,
Drechsler, R., 2010. Time processing in children and adults with ADHD. J. Neural
Transm. 117, 1213–1228.

van de Ville, D., Britz, J., Michel, C.M., 2010. EEG microstate sequences in healthy
humans at rest reveal scale-free dynamics. Proc Natl Acad Sci U S A 107,
18179–18184.

Vaughan, H.J., 1969. The relationship of brain activity to scalp recordings of event-
related potentials. In: Donchin, E., Lindsley, D.B. (Eds.), Averaged evoked poten-
tials: Methods, results, evaluations. . National Aeronautics and Space Adminstra-
tion (NASA No. SP191), Washington, DC, pp. 45–9

Vaughan, H.G.J., 1982. The neural origins of human event-related potentials. Ann. N. Y.
Acad. Sci. 388, 125–138.

Vaughan, H.G.J., 1990. Chronotopic localization of cerebral processes: The temporal di-
mension of brain organization. In: Goldberg, E. (Ed.), Contemporary Neuropsychol-
ogy and the Legacy of Luria, pp. 211–228.

Vidaurre, C., Blankertz, B., 2009. Towards a cure for BCI illiteracy. Brain Topogr. 23, 194–198.
Vulliemoz, S., Thornton, R., Rodionov, R., Carmichael, D.W., Guye, M., Lhatoo, S., McEvoy,

A.W., Spinelli, L., Michel, C.M., Duncan, J.S., Lemieux, L., 2009. The spatio-temporal
mapping of epileptic networks: combination of EEG-fMRI and EEG source imaging.
Neuroimage 46, 834–843.

Vulliemoz, S., Lemieux, L., Daunizeau, J., Michel, C.M., Duncan, J.S., 2010a. The combina-
tion of EEG source imaging and EEG-correlated functional MRI to map epileptic
networks. Epilepsia 51, 491–505.

Vulliemoz, S., Rodionov, R., Carmichael, D.W., Thornton, R., Guye, M., Lhatoo, S.D., Michel,
C.M., Duncan, J.S., Lemieux, L., 2010b. Continuous EEG source imaging enhances anal-
ysis of EEG-fMRI in focal epilepsy. Neuroimage 49, 3219–3229.

Wackerman, J., Lehmann, D., Michel, C.M., Strik, W.K., 1993. Adaptive segmentation of
spontaneous EEG map series into spatially defined microstates. Int. J. Psychophy-
siol. 14, 269–283.

Walter, W.G., Cooper, R., Aldridge, V.J., McCallum, W.C., Winter, A.L., 1964. Contingent
negative variation: an electrical sign of sensorimotor association and expectancy in
the human brain. Nature 203, 380–384.

Warren, C.P., Hu, S., Stead, M., Brinkmann, B.H., Bower, M.R., Worrell, G.A., 2010. Syn-
chrony in normal and focal epileptic brain: the seizure onset zone is functionally
disconnected. J. Neurophysiol. 104, 3530–3539.

Weeks, R.A., Aziz-Sultan, A., Bushara, K.O., Tian, B., Wessinger, C.M., Dang, N.,
Rauschecker, J.P., Hallett, M., 1999. A PET study of human auditory spatial proces-
sing. Neurosci. Lett. 262, 155–158.

Williamson, S.J., Lu, Z.L., Karron, D., Kaufman, L., 1991. Advantages and limitations of
magnetic source imaging. Brain Topogr. 4, 169–180.

Wong, P.K.H., 1991. Introduction to Brain Topography. Plenum Press, New York and
London.
utilization of EEG as a brain imaging tool, NeuroImage (2012),

http://dx.doi.org/10.1016/j.patcog.2011.04.007
http://dx.doi.org/10.1016/j.neuroimage.2011.12.039


15C.M. Michel, M.M. Murray / NeuroImage xxx (2012) xxx–xxx
Yoder, P.J., Molfese, D., Murray, M.M., Key, A., 2012. Normative topographic ERP ana-
lyses of speed of speech processing and grammar before and after grammatical
treatment. Developmental Neuropsychology, in press.

Yuval-Greenberg, S., Deouell, L.Y., 2009. The broadband-transient induced gamma-band
response in scalp EEG reflects the execution of saccades. Brain Topogr. 22, 3–6.

Yuval-Greenberg, S., Deouell, L.Y., 2010. Scalp-recorded induced gamma-band
responses to auditory stimulation and its correlations with saccadic muscle-
activity. Brain Topogr. 24, 30–39.
Please cite this article as: Michel, C.M., Murray, M.M., Towards the
doi:10.1016/j.neuroimage.2011.12.039
Yuval-Greenberg, S., Tomer, O., Keren, A.S., Nelken, I., Deouell, L.Y., 2008. Transient in-
duced gamma-band response in EEG as a manifestation of miniature saccades.
Neuron 58, 429–441.

Zatorre, R.J., Mondor, T.A., Evans, A.C., 1999. Auditory attention to space and frequency
activates similar cerebral systems. Neuroimage 10, 544–554.

Zumsteg, D., Friedman, A.,Wennberg, R.A., Wieser, H.G., 2005. Source localization of mesial
temporal interictal epileptiformdischarges: correlationwith intracranial foramenovale
electrode recordings. Clin. Neurophysiol. 116, 2810–2818.
utilization of EEG as a brain imaging tool, NeuroImage (2012),

http://dx.doi.org/10.1016/j.neuroimage.2011.12.039

	Towards the utilization of EEG as a brain imaging tool
	Introduction
	Principles of EEG spatial analysis
	Topographic analysis the scalp potential field
	Global Field Power
	Global map dissimilarity
	Topographic map classification

	EEG source imaging
	Connectivity analysis

	Spatial analysis of the EEG at rest
	Multichannel analysis of the resting EEG in the frequency domain
	Multichannel analysis of the resting EEG in the time domain

	Spatial analysis of multichannel stimulus-related activity
	Multichannel analysis of average stimulus-related activity
	Towards single-trial decoding

	Clinical applications of spatial EEG analysis
	Spatial EEG analysis in epilepsy
	Spatial EEG analysis of psychiatric and neurological disorders

	Conclusions and outlook
	Acknowledgments
	References


